{"title":"交通事故资源分配分析中的交通警察-路线-巡逻-车辆分配问题的 ALNS 方法","authors":"Jibiao Zhou , Minjie Zhang , Hongliang Ding","doi":"10.1080/15389588.2024.2335560","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Imbalances between limited police resource allocations and the timely handling of road traffic crashes are prevalent. To optimize resource allocations and route choices for traffic police routine patrol vehicle (RPV) assignments, a dynamic crash handling response model was developed.</p></div><div><h3>Methods</h3><p>This approach was characterized by two objective functions: the minimum waiting time and the minimum number of RPVs. In particular, an adaptive large neighborhood search (ALNS) was designed to solve the model. Then, the proposed ALNS-based approach was examined using comprehensive traffic and crash data from Ningbo, China.</p></div><div><h3>Results</h3><p>Finally, a sensitivity analysis was conducted to evaluate the bi-objective of the proposed model and simultaneously demonstrate the efficiency of the obtained solutions. Two resolution methods, the global static resolution mode, and real-time dynamic resolution mode, were applied to explore the optimal solution.</p></div><div><h3>Conclusions</h3><p>The results show that the optimal allocation scheme for traffic police is 13 RPVs based on the global static resolution mode. Specifically, the average waiting time for traffic crash handling can be reduced to 5.5 min, with 53.8% less than 5.0 min and 90.0% less than 10.0 min.</p></div>","PeriodicalId":54422,"journal":{"name":"Traffic Injury Prevention","volume":"25 5","pages":"Pages 688-697"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ALNS-based approach for the traffic-police-routine-patrol-vehicle assignment problem in resource allocation analysis of traffic crashes\",\"authors\":\"Jibiao Zhou , Minjie Zhang , Hongliang Ding\",\"doi\":\"10.1080/15389588.2024.2335560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Imbalances between limited police resource allocations and the timely handling of road traffic crashes are prevalent. To optimize resource allocations and route choices for traffic police routine patrol vehicle (RPV) assignments, a dynamic crash handling response model was developed.</p></div><div><h3>Methods</h3><p>This approach was characterized by two objective functions: the minimum waiting time and the minimum number of RPVs. In particular, an adaptive large neighborhood search (ALNS) was designed to solve the model. Then, the proposed ALNS-based approach was examined using comprehensive traffic and crash data from Ningbo, China.</p></div><div><h3>Results</h3><p>Finally, a sensitivity analysis was conducted to evaluate the bi-objective of the proposed model and simultaneously demonstrate the efficiency of the obtained solutions. Two resolution methods, the global static resolution mode, and real-time dynamic resolution mode, were applied to explore the optimal solution.</p></div><div><h3>Conclusions</h3><p>The results show that the optimal allocation scheme for traffic police is 13 RPVs based on the global static resolution mode. Specifically, the average waiting time for traffic crash handling can be reduced to 5.5 min, with 53.8% less than 5.0 min and 90.0% less than 10.0 min.</p></div>\",\"PeriodicalId\":54422,\"journal\":{\"name\":\"Traffic Injury Prevention\",\"volume\":\"25 5\",\"pages\":\"Pages 688-697\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic Injury Prevention\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1538958824000407\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Injury Prevention","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1538958824000407","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
An ALNS-based approach for the traffic-police-routine-patrol-vehicle assignment problem in resource allocation analysis of traffic crashes
Objectives
Imbalances between limited police resource allocations and the timely handling of road traffic crashes are prevalent. To optimize resource allocations and route choices for traffic police routine patrol vehicle (RPV) assignments, a dynamic crash handling response model was developed.
Methods
This approach was characterized by two objective functions: the minimum waiting time and the minimum number of RPVs. In particular, an adaptive large neighborhood search (ALNS) was designed to solve the model. Then, the proposed ALNS-based approach was examined using comprehensive traffic and crash data from Ningbo, China.
Results
Finally, a sensitivity analysis was conducted to evaluate the bi-objective of the proposed model and simultaneously demonstrate the efficiency of the obtained solutions. Two resolution methods, the global static resolution mode, and real-time dynamic resolution mode, were applied to explore the optimal solution.
Conclusions
The results show that the optimal allocation scheme for traffic police is 13 RPVs based on the global static resolution mode. Specifically, the average waiting time for traffic crash handling can be reduced to 5.5 min, with 53.8% less than 5.0 min and 90.0% less than 10.0 min.
期刊介绍:
The purpose of Traffic Injury Prevention is to bridge the disciplines of medicine, engineering, public health and traffic safety in order to foster the science of traffic injury prevention. The archival journal focuses on research, interventions and evaluations within the areas of traffic safety, crash causation, injury prevention and treatment.
General topics within the journal''s scope are driver behavior, road infrastructure, emerging crash avoidance technologies, crash and injury epidemiology, alcohol and drugs, impact injury biomechanics, vehicle crashworthiness, occupant restraints, pedestrian safety, evaluation of interventions, economic consequences and emergency and clinical care with specific application to traffic injury prevention. The journal includes full length papers, review articles, case studies, brief technical notes and commentaries.