{"title":"微生物燃料电池中多种废水电解质的发电基准与 3D 打印磁盘电极","authors":"Yuvraj Maphrio Mao;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/TNB.2024.3385739","DOIUrl":null,"url":null,"abstract":"Microbial Fuel Cells (MFCs) have recently gained attention, as they are inexpensive, green in nature, and sustainable. As per the report, by Allied Market Research the global market size of MFCs will increase from \n<inline-formula> <tex-math>${\\$}$ </tex-math></inline-formula>\n 264.8 million in 2021 to \n<inline-formula> <tex-math>${\\$}$ </tex-math></inline-formula>\n 452.2 million in 2030, growing at a CAGR of 4.5%. The present work is a comparative study of various types of electrolytes that can be used in MFCs. The working electrodes were printed using conducting graphene-based Polylactic Acid (PLA) filaments with the help of a 3D printer under the principle of the fused deposition method. Simulated electrolytes and natural environmental microbial electrolytes were used here. Also, electrolytes of pure E. coli culture were studied. Lake water reported the highest power density of 8.259 mW/cm2 while Stale E. Coli reported the lowest around 0.184 mW/cm2. The study comprehensively lists potential wastewaters that can fuel the MFCs. With the pioneering of various comparative studies of electrolytes, one can insight into the recruitment of electrolytes with high-performance benchmarks for miniaturized energy storage and other microelectronics applications.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"491-498"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes\",\"authors\":\"Yuvraj Maphrio Mao;Khairunnisa Amreen;Sanket Goel\",\"doi\":\"10.1109/TNB.2024.3385739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial Fuel Cells (MFCs) have recently gained attention, as they are inexpensive, green in nature, and sustainable. As per the report, by Allied Market Research the global market size of MFCs will increase from \\n<inline-formula> <tex-math>${\\\\$}$ </tex-math></inline-formula>\\n 264.8 million in 2021 to \\n<inline-formula> <tex-math>${\\\\$}$ </tex-math></inline-formula>\\n 452.2 million in 2030, growing at a CAGR of 4.5%. The present work is a comparative study of various types of electrolytes that can be used in MFCs. The working electrodes were printed using conducting graphene-based Polylactic Acid (PLA) filaments with the help of a 3D printer under the principle of the fused deposition method. Simulated electrolytes and natural environmental microbial electrolytes were used here. Also, electrolytes of pure E. coli culture were studied. Lake water reported the highest power density of 8.259 mW/cm2 while Stale E. Coli reported the lowest around 0.184 mW/cm2. The study comprehensively lists potential wastewaters that can fuel the MFCs. With the pioneering of various comparative studies of electrolytes, one can insight into the recruitment of electrolytes with high-performance benchmarks for miniaturized energy storage and other microelectronics applications.\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"23 3\",\"pages\":\"491-498\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494773/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10494773/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes
Microbial Fuel Cells (MFCs) have recently gained attention, as they are inexpensive, green in nature, and sustainable. As per the report, by Allied Market Research the global market size of MFCs will increase from
${\$}$
264.8 million in 2021 to
${\$}$
452.2 million in 2030, growing at a CAGR of 4.5%. The present work is a comparative study of various types of electrolytes that can be used in MFCs. The working electrodes were printed using conducting graphene-based Polylactic Acid (PLA) filaments with the help of a 3D printer under the principle of the fused deposition method. Simulated electrolytes and natural environmental microbial electrolytes were used here. Also, electrolytes of pure E. coli culture were studied. Lake water reported the highest power density of 8.259 mW/cm2 while Stale E. Coli reported the lowest around 0.184 mW/cm2. The study comprehensively lists potential wastewaters that can fuel the MFCs. With the pioneering of various comparative studies of electrolytes, one can insight into the recruitment of electrolytes with high-performance benchmarks for miniaturized energy storage and other microelectronics applications.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).