{"title":"单向/编织混合碳纤维增强复合材料层压板在 LVI 后的压缩-压缩疲劳性能","authors":"Wenqian Wang, Hangchao Wang, Yu Feng, Binlin Ma, Zhe Li, Jinpeng Li","doi":"10.1177/00219983241246108","DOIUrl":null,"url":null,"abstract":"Compression-compression fatigue behavior of hybrid unidirectional/woven carbon-fiber reinforced composite laminates after low-velocity impact (LVI) was studied in this paper. The paper contains two parts. Firstly, different levels of impact energy were introduced on the specimens. Impact damage modes were obtained and characterized as fiber breakages, matrix cracks, indentation and delamination. The relationships between indentation depth/damage area and impact energy were established. Secondly, compression-compression fatigue tests were conducted on the impact damaged specimens. Fatigue life degradation trends were analyzed and fatigue limit for different types of specimens was determined. Delamination areas by depth mode and amplitude mode of C-scan showed an increasing trend with the fatigue life increasing. Stiffness decreased sharply in the early and ending stages of fatigue life. However, stiffness exhibited stable or slightly decreasing rates in the mid-stage of fatigue life. A line-shaped failure cracks going through the impact point were observed in the fatigue failure specimens.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"18 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression-compression fatigue performances of hybrid unidirectional/woven carbon-fiber reinforced composite laminates after LVI\",\"authors\":\"Wenqian Wang, Hangchao Wang, Yu Feng, Binlin Ma, Zhe Li, Jinpeng Li\",\"doi\":\"10.1177/00219983241246108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compression-compression fatigue behavior of hybrid unidirectional/woven carbon-fiber reinforced composite laminates after low-velocity impact (LVI) was studied in this paper. The paper contains two parts. Firstly, different levels of impact energy were introduced on the specimens. Impact damage modes were obtained and characterized as fiber breakages, matrix cracks, indentation and delamination. The relationships between indentation depth/damage area and impact energy were established. Secondly, compression-compression fatigue tests were conducted on the impact damaged specimens. Fatigue life degradation trends were analyzed and fatigue limit for different types of specimens was determined. Delamination areas by depth mode and amplitude mode of C-scan showed an increasing trend with the fatigue life increasing. Stiffness decreased sharply in the early and ending stages of fatigue life. However, stiffness exhibited stable or slightly decreasing rates in the mid-stage of fatigue life. A line-shaped failure cracks going through the impact point were observed in the fatigue failure specimens.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241246108\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241246108","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Compression-compression fatigue performances of hybrid unidirectional/woven carbon-fiber reinforced composite laminates after LVI
Compression-compression fatigue behavior of hybrid unidirectional/woven carbon-fiber reinforced composite laminates after low-velocity impact (LVI) was studied in this paper. The paper contains two parts. Firstly, different levels of impact energy were introduced on the specimens. Impact damage modes were obtained and characterized as fiber breakages, matrix cracks, indentation and delamination. The relationships between indentation depth/damage area and impact energy were established. Secondly, compression-compression fatigue tests were conducted on the impact damaged specimens. Fatigue life degradation trends were analyzed and fatigue limit for different types of specimens was determined. Delamination areas by depth mode and amplitude mode of C-scan showed an increasing trend with the fatigue life increasing. Stiffness decreased sharply in the early and ending stages of fatigue life. However, stiffness exhibited stable or slightly decreasing rates in the mid-stage of fatigue life. A line-shaped failure cracks going through the impact point were observed in the fatigue failure specimens.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).