通过基于流量的模型对潜空间密度图进行交互式可视化查询

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-04-12 DOI:10.1111/tgis.13164
Ning Li, Tianyi Liang, Shiqi Jiang, Changbo Wang, Chenhui Li
{"title":"通过基于流量的模型对潜空间密度图进行交互式可视化查询","authors":"Ning Li, Tianyi Liang, Shiqi Jiang, Changbo Wang, Chenhui Li","doi":"10.1111/tgis.13164","DOIUrl":null,"url":null,"abstract":"Visual querying of spatiotemporal data has become a dominant mode in the field of visual analytics. Previous studies have utilized well‐designed data structures to speed up the querying of spatiotemporal data. However, reducing storage overhead while improving the querying efficiency of data distribution remains a significant challenge. We propose a flow‐based neural representation method for efficient visual querying. First, we transform spatiotemporal data into density maps through kernel density estimation. Then, we leverage the data‐driven modeling capabilities of a flow‐based neural network to achieve a highly latent representation of the data. Various computations and queries can be performed on the latent representation to improve querying efficiency. Our experiments demonstrate that our approach achieves competitive results in visually querying spatiotemporal data in terms of storage overhead and real‐time interaction efficiency.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"117 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive visual query of density maps on latent space via flow‐based models\",\"authors\":\"Ning Li, Tianyi Liang, Shiqi Jiang, Changbo Wang, Chenhui Li\",\"doi\":\"10.1111/tgis.13164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual querying of spatiotemporal data has become a dominant mode in the field of visual analytics. Previous studies have utilized well‐designed data structures to speed up the querying of spatiotemporal data. However, reducing storage overhead while improving the querying efficiency of data distribution remains a significant challenge. We propose a flow‐based neural representation method for efficient visual querying. First, we transform spatiotemporal data into density maps through kernel density estimation. Then, we leverage the data‐driven modeling capabilities of a flow‐based neural network to achieve a highly latent representation of the data. Various computations and queries can be performed on the latent representation to improve querying efficiency. Our experiments demonstrate that our approach achieves competitive results in visually querying spatiotemporal data in terms of storage overhead and real‐time interaction efficiency.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13164\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13164","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

时空数据的可视化查询已成为可视化分析领域的主流模式。以往的研究利用精心设计的数据结构来加快时空数据的查询速度。然而,在提高数据分布查询效率的同时减少存储开销仍然是一个重大挑战。我们提出了一种基于流的神经表示方法来实现高效的可视化查询。首先,我们通过核密度估计将时空数据转换为密度图。然后,我们利用基于流的神经网络的数据驱动建模能力,实现数据的高度潜隐表示。在潜表征上可以执行各种计算和查询,从而提高查询效率。我们的实验证明,我们的方法在可视化查询时空数据方面取得了在存储开销和实时交互效率方面具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive visual query of density maps on latent space via flow‐based models
Visual querying of spatiotemporal data has become a dominant mode in the field of visual analytics. Previous studies have utilized well‐designed data structures to speed up the querying of spatiotemporal data. However, reducing storage overhead while improving the querying efficiency of data distribution remains a significant challenge. We propose a flow‐based neural representation method for efficient visual querying. First, we transform spatiotemporal data into density maps through kernel density estimation. Then, we leverage the data‐driven modeling capabilities of a flow‐based neural network to achieve a highly latent representation of the data. Various computations and queries can be performed on the latent representation to improve querying efficiency. Our experiments demonstrate that our approach achieves competitive results in visually querying spatiotemporal data in terms of storage overhead and real‐time interaction efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1