Amer Mecellem, Soufyane Belhenini, Douaa Khelladi, Caroline Richard
{"title":"简化倒装芯片微型组件四点弯曲测试的有限元分析","authors":"Amer Mecellem, Soufyane Belhenini, Douaa Khelladi, Caroline Richard","doi":"10.1108/mi-01-2024-0026","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.</p><!--/ Abstract__block -->","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplifying finite elements analysis of four-point bending tests for flip chip microcomponents\",\"authors\":\"Amer Mecellem, Soufyane Belhenini, Douaa Khelladi, Caroline Richard\",\"doi\":\"10.1108/mi-01-2024-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-01-2024-0026\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-01-2024-0026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Simplifying finite elements analysis of four-point bending tests for flip chip microcomponents
Purpose
The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.
Design/methodology/approach
In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.
Findings
The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.
Originality/value
This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.