通过可扩展设计加速多样化的细胞疗法

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2024-04-10 DOI:10.1146/annurev-chembioeng-100722-121610
Emma L. Peterman, Deon Ploessl, Kate E. Galloway
{"title":"通过可扩展设计加速多样化的细胞疗法","authors":"Emma L. Peterman, Deon Ploessl, Kate E. Galloway","doi":"10.1146/annurev-chembioeng-100722-121610","DOIUrl":null,"url":null,"abstract":"Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"46 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Diverse Cell-Based Therapies Through Scalable Design\",\"authors\":\"Emma L. Peterman, Deon Ploessl, Kate E. Galloway\",\"doi\":\"10.1146/annurev-chembioeng-100722-121610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-100722-121610\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-100722-121610","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

增强细胞的新型基因编码功能将支持超越天然免疫监视和组织再生能力的疗法。然而,利用转基因载体进行大规模细胞工程仍是实现细胞疗法潜力的一项挑战。在本综述中,我们将介绍一系列用于细胞疗法的原代细胞和干细胞工程应用。我们重点介绍了哺乳动物细胞工程从生物生产到精准编辑治疗相关细胞的工具和进展。此外,我们还探讨了如何调整转基因方法和基因载体设计以提高性能。总之,我们通过利用不同的细胞类型、整合不断扩大的合成生物学工具阵列,以及通过先进的基因组编写技术构建细胞工具,为加快基于细胞的创新疗法的转化提供了一个愿景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Diverse Cell-Based Therapies Through Scalable Design
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction. Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. Fluid Ejections in Nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1