Yuan Xin, Qiang Sun, Tuo Lu, Huiyuan Bian, Ziyu Wang, Tao Luo
{"title":"含水量和硫酸钠浓度对红土电阻率的影响","authors":"Yuan Xin, Qiang Sun, Tuo Lu, Huiyuan Bian, Ziyu Wang, Tao Luo","doi":"10.1007/s11200-023-0124-0","DOIUrl":null,"url":null,"abstract":"<div><p>Red clay is widely distributed globally and is closely related to human production and life. The middle reaches of the Yellow River basin in China are characterized by complex geological structures, concentrated rainfall periods. The soluble salts such as sodium sulfate enter the red clay particles along with the infiltrating water, forming a red clay-like saline soil. In order to study the effects of water and salt on red clay soils, this paper uses red clay in the Heyang of Weinan with different ratios of distilled water (10–20%) and Na<sub>2</sub>SO<sub>4</sub> (0–4%), and obtains the resistivity of red clay soils at different frequencies (100 Hz–100 kHz) using an inductance, capacitance and resistance digital bridge tester. The results show that the resistivity of red clay is negatively correlated with water and salt content. With the increase of water content, the increase of conductive paths in the pore water improved the electrical conductivity of the red clay; while when the concentration of Na<sub>2</sub>SO<sub>4</sub> increased, the free moving anions and cations in the pore water increased, the electrical conduction efficiency increased and the resistivity decreased. The high frequency increased the conductivity of red clay by contributing to electrical double layer deformation, whereas the electrode polarization led to inhibition of conductivity under low frequency. A negative power exponential relationship exists between the resistivity of red clay and the test frequency. This study may provide a valuable reference for the rapid identification of the physical properties of red clay and its internal structure.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of water content and sodium sulfate concentration on the resistivity of red clay\",\"authors\":\"Yuan Xin, Qiang Sun, Tuo Lu, Huiyuan Bian, Ziyu Wang, Tao Luo\",\"doi\":\"10.1007/s11200-023-0124-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Red clay is widely distributed globally and is closely related to human production and life. The middle reaches of the Yellow River basin in China are characterized by complex geological structures, concentrated rainfall periods. The soluble salts such as sodium sulfate enter the red clay particles along with the infiltrating water, forming a red clay-like saline soil. In order to study the effects of water and salt on red clay soils, this paper uses red clay in the Heyang of Weinan with different ratios of distilled water (10–20%) and Na<sub>2</sub>SO<sub>4</sub> (0–4%), and obtains the resistivity of red clay soils at different frequencies (100 Hz–100 kHz) using an inductance, capacitance and resistance digital bridge tester. The results show that the resistivity of red clay is negatively correlated with water and salt content. With the increase of water content, the increase of conductive paths in the pore water improved the electrical conductivity of the red clay; while when the concentration of Na<sub>2</sub>SO<sub>4</sub> increased, the free moving anions and cations in the pore water increased, the electrical conduction efficiency increased and the resistivity decreased. The high frequency increased the conductivity of red clay by contributing to electrical double layer deformation, whereas the electrode polarization led to inhibition of conductivity under low frequency. A negative power exponential relationship exists between the resistivity of red clay and the test frequency. This study may provide a valuable reference for the rapid identification of the physical properties of red clay and its internal structure.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-023-0124-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-023-0124-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Effect of water content and sodium sulfate concentration on the resistivity of red clay
Red clay is widely distributed globally and is closely related to human production and life. The middle reaches of the Yellow River basin in China are characterized by complex geological structures, concentrated rainfall periods. The soluble salts such as sodium sulfate enter the red clay particles along with the infiltrating water, forming a red clay-like saline soil. In order to study the effects of water and salt on red clay soils, this paper uses red clay in the Heyang of Weinan with different ratios of distilled water (10–20%) and Na2SO4 (0–4%), and obtains the resistivity of red clay soils at different frequencies (100 Hz–100 kHz) using an inductance, capacitance and resistance digital bridge tester. The results show that the resistivity of red clay is negatively correlated with water and salt content. With the increase of water content, the increase of conductive paths in the pore water improved the electrical conductivity of the red clay; while when the concentration of Na2SO4 increased, the free moving anions and cations in the pore water increased, the electrical conduction efficiency increased and the resistivity decreased. The high frequency increased the conductivity of red clay by contributing to electrical double layer deformation, whereas the electrode polarization led to inhibition of conductivity under low frequency. A negative power exponential relationship exists between the resistivity of red clay and the test frequency. This study may provide a valuable reference for the rapid identification of the physical properties of red clay and its internal structure.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.