利用因果子图进行可推广的归纳关系预测

Han Yu, Ziniu Liu, Hongkui Tu, Kai Chen, Aiping Li
{"title":"利用因果子图进行可推广的归纳关系预测","authors":"Han Yu, Ziniu Liu, Hongkui Tu, Kai Chen, Aiping Li","doi":"10.1007/s11280-024-01264-5","DOIUrl":null,"url":null,"abstract":"<p>Inductive relation prediction is an important learning task for knowledge graph reasoning that aims to infer new facts from existing ones. Previous graph neural networks (GNNs) based methods have demonstrated great success in inductive relation prediction by capturing more subgraph information. However, they aggregate all reasoning paths which might introduces redundant information. Such redundant information changes with the context of entity and easily outside the training distribution making existing GNN-base methods suffer from poor generalization. In this work, we propose a novel causal knowledge graph reasoning (CKGR) framework for inductive relation prediction task with better generalization. We first take a causal view of inductive relation prediction and construct a structural causal model (SCM) that reveals the relationship between variables. With our assumption, CKGR extracts causal and shortcut subgraphs conditioned on query triplet. Then, we parameter the backdoor adjustment of causality theory by making intervention in representation space. In this way, CKGR can learn stable causal feature and alleviates the confounding effect of shortcut features that are spuriously correlated to relation prediction. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the effectiveness of CKGR.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizable inductive relation prediction with causal subgraph\",\"authors\":\"Han Yu, Ziniu Liu, Hongkui Tu, Kai Chen, Aiping Li\",\"doi\":\"10.1007/s11280-024-01264-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inductive relation prediction is an important learning task for knowledge graph reasoning that aims to infer new facts from existing ones. Previous graph neural networks (GNNs) based methods have demonstrated great success in inductive relation prediction by capturing more subgraph information. However, they aggregate all reasoning paths which might introduces redundant information. Such redundant information changes with the context of entity and easily outside the training distribution making existing GNN-base methods suffer from poor generalization. In this work, we propose a novel causal knowledge graph reasoning (CKGR) framework for inductive relation prediction task with better generalization. We first take a causal view of inductive relation prediction and construct a structural causal model (SCM) that reveals the relationship between variables. With our assumption, CKGR extracts causal and shortcut subgraphs conditioned on query triplet. Then, we parameter the backdoor adjustment of causality theory by making intervention in representation space. In this way, CKGR can learn stable causal feature and alleviates the confounding effect of shortcut features that are spuriously correlated to relation prediction. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the effectiveness of CKGR.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01264-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01264-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

归纳关系预测是知识图谱推理的一项重要学习任务,旨在从现有事实中推断出新事实。以往基于图神经网络(GNN)的方法通过捕捉更多的子图信息,在归纳关系预测方面取得了巨大成功。但是,这些方法汇总了所有推理路径,可能会引入冗余信息。这些冗余信息会随着实体上下文的变化而变化,而且很容易超出训练分布的范围,因此现有的基于 GNN 的方法的泛化能力很差。在这项工作中,我们为归纳关系预测任务提出了一种新型因果知识图推理(CKGR)框架,它具有更好的泛化能力。我们首先从因果关系的角度来看待归纳式关系预测,并构建了一个结构因果模型(SCM)来揭示变量之间的关系。根据我们的假设,CKGR 提取了以查询三元组为条件的因果子图和捷径子图。然后,我们通过对表示空间进行干预,对因果关系理论的后门调整进行参数化。这样,CKGR 就能学习到稳定的因果特征,并减轻与关系预测虚假相关的捷径特征的干扰效应。在现实世界和合成数据集的各种任务中进行的大量实验证明了 CKGR 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalizable inductive relation prediction with causal subgraph

Inductive relation prediction is an important learning task for knowledge graph reasoning that aims to infer new facts from existing ones. Previous graph neural networks (GNNs) based methods have demonstrated great success in inductive relation prediction by capturing more subgraph information. However, they aggregate all reasoning paths which might introduces redundant information. Such redundant information changes with the context of entity and easily outside the training distribution making existing GNN-base methods suffer from poor generalization. In this work, we propose a novel causal knowledge graph reasoning (CKGR) framework for inductive relation prediction task with better generalization. We first take a causal view of inductive relation prediction and construct a structural causal model (SCM) that reveals the relationship between variables. With our assumption, CKGR extracts causal and shortcut subgraphs conditioned on query triplet. Then, we parameter the backdoor adjustment of causality theory by making intervention in representation space. In this way, CKGR can learn stable causal feature and alleviates the confounding effect of shortcut features that are spuriously correlated to relation prediction. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the effectiveness of CKGR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networks A SHAP-based controversy analysis through communities on Twitter pFind: Privacy-preserving lost object finding in vehicular crowdsensing Use of prompt-based learning for code-mixed and code-switched text classification Drug traceability system based on semantic blockchain and on a reputation method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1