带有混合电子传输层 (h-ETL) 的基于 Sb2S3 的太阳能电池性能研究:使用 SCAPS-1D 软件的模拟方法

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Photoenergy Pub Date : 2024-04-08 DOI:10.1155/2024/5188636
Pierre Gérard Darel Kond Ngue, Ariel Teyou Ngoupo, Aimé Magloire Ntouga Abena, François Xavier Abomo Abega, Jean-Marie Bienvenu Ndjaka
{"title":"带有混合电子传输层 (h-ETL) 的基于 Sb2S3 的太阳能电池性能研究:使用 SCAPS-1D 软件的模拟方法","authors":"Pierre Gérard Darel Kond Ngue, Ariel Teyou Ngoupo, Aimé Magloire Ntouga Abena, François Xavier Abomo Abega, Jean-Marie Bienvenu Ndjaka","doi":"10.1155/2024/5188636","DOIUrl":null,"url":null,"abstract":"In order to reduce current leakage and improve electron transfer in solar cells, charge transport layers (CTL), mainly hybrid electron transport layers (<i>h</i>-ETL), are considered as a solution. In this research contribution, computational analysis using SCAPS-1D software is performed to explore the output photovoltaic parameters of a Sb<sub>2</sub>S<sub>3</sub>-based solar cell with <i>h</i>-ETL. No theoretical works on this configuration have been previously reported. The main objectives of the present work are to propose a <i>h</i>-ETL with good band alignment with the Sb<sub>2</sub>S<sub>3</sub> absorber, high transparency, and Cd free; to mitigate the instability and cost issues associated with using Spiro-OMeTAD HTL; and to optimize the solar cell. Thus, we calibrated the <span><svg height=\"10.5647pt\" style=\"vertical-align:-1.928801pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 5.99765 10.5647\" width=\"5.99765pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.35121 8.8423\" width=\"9.35121pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> characteristics and electrical parameters of the FTO/(ZnO/TiO<sub>2</sub>)/Sb<sub>2</sub>S<sub>3</sub>/Spiro-OMeTAD/Au solar cell by numerical simulation and compared them with those of the experiment. Subsequently, our simulations show that to replace the TiO<sub>2</sub> ETL used in the experiment and to form the <i>h</i>-ETL with ZnO, IGZO is found to be a good candidate. It has better band alignment with the Sb<sub>2</sub>S<sub>3</sub> absorber than TiO<sub>2</sub> ETL, which reduces the trap states at the ETL/Sb<sub>2</sub>S<sub>3</sub> interface; it has high transparency due to its wide bandgap; and an intense electric field is generated at the IGZO/Sb<sub>2</sub>S<sub>3</sub> interface, which reduces the recombination phenomenon at this interface. MoO<sub>3</sub>, MASnBr<sub>3</sub>, Cu<sub>2</sub>O, CuI, and CuSCN HTL were also tested to replace the Spiro-OMeTAD HTL. Simulation results show that the cell with MoO<sub>3</sub> HTL achieves higher performance due to its high hole mobility and high quantum efficiency in the visible region; it also allows the solar cell to have better thermal stability (<span><svg height=\"9.10327pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 27.887 9.10327\" width=\"27.887pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.917,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,20.256,0)\"></path></g></svg><span></span><svg height=\"9.10327pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"31.4691838 -8.75334 29.553 9.10327\" width=\"29.553pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.519,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,39.15,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,45.39,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,48.354,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,54.594,0)\"></path></g></svg></span>%/K) than the cell with Spiro-OMeTAD HTL (<span><svg height=\"9.10327pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 27.887 9.10327\" width=\"27.887pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g190-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.917,0)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.256,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"9.10327pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"31.4691838 -8.75334 29.553 9.10327\" width=\"29.553pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.519,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.15,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,45.39,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,48.354,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,54.594,0)\"><use xlink:href=\"#g113-52\"></use></g></svg></span>%/K). The parameters that could improve the solar cell efficiency (<span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.54569 9.39034\" width=\"6.54569pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> obtained after these substitutions were also optimized. In particular, the parameters of the Sb<sub>2</sub>S<sub>3</sub> absorber layer (thickness, defect density, and doping), ETL and HTL layer thicknesses, <i>h</i>-ETL/Sb<sub>2</sub>S<sub>3</sub> interface defect density, and series and shunt resistances have been optimized. Finally, by combining high performance and thermal stability, the results show that the thermal stability of the solar cell depends on the back contact type; thus, nickel (Ni) was found to combine high performance and better thermal stability among the back contacts investigated. After these improvements, the efficiency of the Sb<sub>2</sub>S<sub>3</sub>-based solar cell increased from 5.08% (<span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 27.196 11.9453\" width=\"27.196pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-75\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.031,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,9.344,3.132)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.565,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"30.7781838 -8.6359 28.175 11.9453\" width=\"28.175pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.828,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,37.068,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.308,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,46.272,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,52.512,0)\"></path></g></svg></span> mA/cm<sup>2</sup>, <span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 32.155 11.9453\" width=\"32.155pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-87\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.332,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.294,3.132)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,24.524,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"35.7371838 -8.6359 21.921 11.9453\" width=\"21.921pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.787,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.027,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.991,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,51.231,0)\"><use xlink:href=\"#g113-55\"></use></g></svg></span> V, and <span><svg height=\"8.73137pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.52498 25.068 8.73137\" width=\"25.068pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.877,0)\"><use xlink:href=\"#g190-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,17.437,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"8.73137pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"28.6501838 -8.52498 28.157 8.73137\" width=\"28.157pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,28.7,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.941,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,41.181,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.145,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,50.385,0)\"><use xlink:href=\"#g113-49\"></use></g></svg></span>%) to 15.43% (<span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 27.196 11.9453\" width=\"27.196pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-75\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.031,3.132)\"><use xlink:href=\"#g190-84\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.344,3.132)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.565,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"30.7781838 -8.6359 28.175 11.9453\" width=\"28.175pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,30.828,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.068,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.308,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,46.272,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,52.512,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> mA/cm<sup>2</sup>, <span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 32.155 11.9453\" width=\"32.155pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-87\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.332,3.132)\"><use xlink:href=\"#g190-80\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,14.294,3.132)\"><use xlink:href=\"#g190-68\"></use></g><g transform=\"matrix(.013,0,0,-0.013,24.524,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"35.7371838 -8.6359 21.921 11.9453\" width=\"21.921pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.787,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.027,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.991,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,51.231,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> V, and <span><svg height=\"8.73137pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.52498 25.068 8.73137\" width=\"25.068pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g190-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.877,0)\"><use xlink:href=\"#g190-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,17.437,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"8.73137pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"28.6501838 -8.52498 28.157 8.73137\" width=\"28.157pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,28.7,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,34.942,0)\"><use xlink:href=\"#g113-53\"></use></g><g transform=\"matrix(.013,0,0,-0.013,41.183,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.147,0)\"><use xlink:href=\"#g113-56\"></use></g><g transform=\"matrix(.013,0,0,-0.013,50.389,0)\"><use xlink:href=\"#g113-55\"></use></g></svg></span>%). This study proposes an approach to optimize the Sb<sub>2</sub>S<sub>3</sub> upper subcell for tandem solar cells.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"244 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS-1D Software\",\"authors\":\"Pierre Gérard Darel Kond Ngue, Ariel Teyou Ngoupo, Aimé Magloire Ntouga Abena, François Xavier Abomo Abega, Jean-Marie Bienvenu Ndjaka\",\"doi\":\"10.1155/2024/5188636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce current leakage and improve electron transfer in solar cells, charge transport layers (CTL), mainly hybrid electron transport layers (<i>h</i>-ETL), are considered as a solution. In this research contribution, computational analysis using SCAPS-1D software is performed to explore the output photovoltaic parameters of a Sb<sub>2</sub>S<sub>3</sub>-based solar cell with <i>h</i>-ETL. No theoretical works on this configuration have been previously reported. The main objectives of the present work are to propose a <i>h</i>-ETL with good band alignment with the Sb<sub>2</sub>S<sub>3</sub> absorber, high transparency, and Cd free; to mitigate the instability and cost issues associated with using Spiro-OMeTAD HTL; and to optimize the solar cell. Thus, we calibrated the <span><svg height=\\\"10.5647pt\\\" style=\\\"vertical-align:-1.928801pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 5.99765 10.5647\\\" width=\\\"5.99765pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>-</span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.35121 8.8423\\\" width=\\\"9.35121pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> characteristics and electrical parameters of the FTO/(ZnO/TiO<sub>2</sub>)/Sb<sub>2</sub>S<sub>3</sub>/Spiro-OMeTAD/Au solar cell by numerical simulation and compared them with those of the experiment. Subsequently, our simulations show that to replace the TiO<sub>2</sub> ETL used in the experiment and to form the <i>h</i>-ETL with ZnO, IGZO is found to be a good candidate. It has better band alignment with the Sb<sub>2</sub>S<sub>3</sub> absorber than TiO<sub>2</sub> ETL, which reduces the trap states at the ETL/Sb<sub>2</sub>S<sub>3</sub> interface; it has high transparency due to its wide bandgap; and an intense electric field is generated at the IGZO/Sb<sub>2</sub>S<sub>3</sub> interface, which reduces the recombination phenomenon at this interface. MoO<sub>3</sub>, MASnBr<sub>3</sub>, Cu<sub>2</sub>O, CuI, and CuSCN HTL were also tested to replace the Spiro-OMeTAD HTL. Simulation results show that the cell with MoO<sub>3</sub> HTL achieves higher performance due to its high hole mobility and high quantum efficiency in the visible region; it also allows the solar cell to have better thermal stability (<span><svg height=\\\"9.10327pt\\\" style=\\\"vertical-align:-0.3499298pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.75334 27.887 9.10327\\\" width=\\\"27.887pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,7.917,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,20.256,0)\\\"></path></g></svg><span></span><svg height=\\\"9.10327pt\\\" style=\\\"vertical-align:-0.3499298pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.4691838 -8.75334 29.553 9.10327\\\" width=\\\"29.553pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.519,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,39.15,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,45.39,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,48.354,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,54.594,0)\\\"></path></g></svg></span>%/K) than the cell with Spiro-OMeTAD HTL (<span><svg height=\\\"9.10327pt\\\" style=\\\"vertical-align:-0.3499298pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.75334 27.887 9.10327\\\" width=\\\"27.887pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g190-85\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.917,0)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,20.256,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"9.10327pt\\\" style=\\\"vertical-align:-0.3499298pt\\\" version=\\\"1.1\\\" viewbox=\\\"31.4691838 -8.75334 29.553 9.10327\\\" width=\\\"29.553pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,31.519,0)\\\"><use xlink:href=\\\"#g117-33\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,39.15,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,45.39,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,48.354,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,54.594,0)\\\"><use xlink:href=\\\"#g113-52\\\"></use></g></svg></span>%/K). The parameters that could improve the solar cell efficiency (<span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.54569 9.39034\\\" width=\\\"6.54569pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>)</span> obtained after these substitutions were also optimized. In particular, the parameters of the Sb<sub>2</sub>S<sub>3</sub> absorber layer (thickness, defect density, and doping), ETL and HTL layer thicknesses, <i>h</i>-ETL/Sb<sub>2</sub>S<sub>3</sub> interface defect density, and series and shunt resistances have been optimized. Finally, by combining high performance and thermal stability, the results show that the thermal stability of the solar cell depends on the back contact type; thus, nickel (Ni) was found to combine high performance and better thermal stability among the back contacts investigated. After these improvements, the efficiency of the Sb<sub>2</sub>S<sub>3</sub>-based solar cell increased from 5.08% (<span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 27.196 11.9453\\\" width=\\\"27.196pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-75\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.031,3.132)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.344,3.132)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,19.565,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"30.7781838 -8.6359 28.175 11.9453\\\" width=\\\"28.175pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,30.828,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,37.068,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,43.308,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,46.272,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,52.512,0)\\\"></path></g></svg></span> mA/cm<sup>2</sup>, <span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 32.155 11.9453\\\" width=\\\"32.155pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-87\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.332,3.132)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.294,3.132)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,24.524,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"35.7371838 -8.6359 21.921 11.9453\\\" width=\\\"21.921pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,35.787,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.027,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.991,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,51.231,0)\\\"><use xlink:href=\\\"#g113-55\\\"></use></g></svg></span> V, and <span><svg height=\\\"8.73137pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.52498 25.068 8.73137\\\" width=\\\"25.068pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,6.877,0)\\\"><use xlink:href=\\\"#g190-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,17.437,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"8.73137pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"28.6501838 -8.52498 28.157 8.73137\\\" width=\\\"28.157pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,28.7,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,34.941,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,41.181,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.145,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,50.385,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g></svg></span>%) to 15.43% (<span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 27.196 11.9453\\\" width=\\\"27.196pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-75\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.031,3.132)\\\"><use xlink:href=\\\"#g190-84\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.344,3.132)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,19.565,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"30.7781838 -8.6359 28.175 11.9453\\\" width=\\\"28.175pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,30.828,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.068,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,43.308,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,46.272,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,52.512,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg></span> mA/cm<sup>2</sup>, <span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 32.155 11.9453\\\" width=\\\"32.155pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-87\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.332,3.132)\\\"><use xlink:href=\\\"#g190-80\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.294,3.132)\\\"><use xlink:href=\\\"#g190-68\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,24.524,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"11.9453pt\\\" style=\\\"vertical-align:-3.309401pt\\\" version=\\\"1.1\\\" viewbox=\\\"35.7371838 -8.6359 21.921 11.9453\\\" width=\\\"21.921pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,35.787,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.027,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.991,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,51.231,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg></span> V, and <span><svg height=\\\"8.73137pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.52498 25.068 8.73137\\\" width=\\\"25.068pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g190-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.877,0)\\\"><use xlink:href=\\\"#g190-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,17.437,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"8.73137pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"28.6501838 -8.52498 28.157 8.73137\\\" width=\\\"28.157pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,28.7,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,34.942,0)\\\"><use xlink:href=\\\"#g113-53\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,41.183,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.147,0)\\\"><use xlink:href=\\\"#g113-56\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,50.389,0)\\\"><use xlink:href=\\\"#g113-55\\\"></use></g></svg></span>%). This study proposes an approach to optimize the Sb<sub>2</sub>S<sub>3</sub> upper subcell for tandem solar cells.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\"244 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5188636\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5188636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了减少太阳能电池中的漏电流并改善电子传输,电荷传输层(CTL),主要是混合电子传输层(h-ETL)被认为是一种解决方案。在这项研究成果中,使用 SCAPS-1D 软件进行了计算分析,探讨了基于 Sb2S3 的混合电子传输层太阳能电池的光伏输出参数。此前还没有关于这种配置的理论研究报告。本研究的主要目的是提出一种与 Sb2S3 吸收体具有良好带对准、高透明度和无镉的 h-ETL;缓解与使用 Spiro-OMeTAD HTL 相关的不稳定性和成本问题;以及优化太阳能电池。因此,我们通过数值模拟校准了 FTO/(ZnO/TiO2)/Sb2S3/Spiro-OMeTAD/Au 太阳能电池的 - 特性和电气参数,并与实验结果进行了比较。随后,我们的模拟结果表明,要取代实验中使用的 TiO2 ETL 并与 ZnO 形成 h-ETL,IGZO 是一个很好的候选材料。与 TiO2 ETL 相比,IGZO 与 Sb2S3 吸收体的能带排列更好,这就减少了 ETL/Sb2S3 界面的陷阱态;IGZO 的宽带隙使其具有高透明度;IGZO/Sb2S3 界面会产生强电场,这就减少了该界面的重组现象。还测试了 MoO3、MASnBr3、Cu2O、CuI 和 CuSCN HTL,以取代 Spiro-OMeTAD HTL。模拟结果表明,采用 MoO3 HTL 的电池由于在可见光区域具有高空穴迁移率和高量子效率,因此性能更高;与采用 Spiro-OMeTAD HTL 的电池相比,它还能使太阳能电池具有更好的热稳定性(%/K)。此外,还对这些替代后可提高太阳能电池效率()的参数进行了优化。特别是对 Sb2S3 吸收层参数(厚度、缺陷密度和掺杂)、ETL 和 HTL 层厚度、h-ETL/Sb2S3 接口缺陷密度以及串联和并联电阻进行了优化。最后,通过将高性能和热稳定性相结合,结果表明太阳能电池的热稳定性取决于背触点类型;因此,在所研究的背触点中,镍(Ni)兼具高性能和更好的热稳定性。经过这些改进,基于 Sb2S3 的太阳能电池的效率从 5.08%(毫安/平方厘米、电压和百分比)提高到 15.43%(毫安/平方厘米、电压和百分比)。本研究提出了一种优化串联太阳能电池 Sb2S3 上子电池的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS-1D Software
In order to reduce current leakage and improve electron transfer in solar cells, charge transport layers (CTL), mainly hybrid electron transport layers (h-ETL), are considered as a solution. In this research contribution, computational analysis using SCAPS-1D software is performed to explore the output photovoltaic parameters of a Sb2S3-based solar cell with h-ETL. No theoretical works on this configuration have been previously reported. The main objectives of the present work are to propose a h-ETL with good band alignment with the Sb2S3 absorber, high transparency, and Cd free; to mitigate the instability and cost issues associated with using Spiro-OMeTAD HTL; and to optimize the solar cell. Thus, we calibrated the - characteristics and electrical parameters of the FTO/(ZnO/TiO2)/Sb2S3/Spiro-OMeTAD/Au solar cell by numerical simulation and compared them with those of the experiment. Subsequently, our simulations show that to replace the TiO2 ETL used in the experiment and to form the h-ETL with ZnO, IGZO is found to be a good candidate. It has better band alignment with the Sb2S3 absorber than TiO2 ETL, which reduces the trap states at the ETL/Sb2S3 interface; it has high transparency due to its wide bandgap; and an intense electric field is generated at the IGZO/Sb2S3 interface, which reduces the recombination phenomenon at this interface. MoO3, MASnBr3, Cu2O, CuI, and CuSCN HTL were also tested to replace the Spiro-OMeTAD HTL. Simulation results show that the cell with MoO3 HTL achieves higher performance due to its high hole mobility and high quantum efficiency in the visible region; it also allows the solar cell to have better thermal stability (%/K) than the cell with Spiro-OMeTAD HTL (%/K). The parameters that could improve the solar cell efficiency () obtained after these substitutions were also optimized. In particular, the parameters of the Sb2S3 absorber layer (thickness, defect density, and doping), ETL and HTL layer thicknesses, h-ETL/Sb2S3 interface defect density, and series and shunt resistances have been optimized. Finally, by combining high performance and thermal stability, the results show that the thermal stability of the solar cell depends on the back contact type; thus, nickel (Ni) was found to combine high performance and better thermal stability among the back contacts investigated. After these improvements, the efficiency of the Sb2S3-based solar cell increased from 5.08% ( mA/cm2,  V, and %) to 15.43% ( mA/cm2,  V, and %). This study proposes an approach to optimize the Sb2S3 upper subcell for tandem solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
期刊最新文献
In vitro evaluation of the selective cytotoxicity and genotoxicity of three synthetic ortho-nitrobenzyl derivatives in human cancer cell lines, with and without metabolic activation. IGWO-VINC Algorithm Applied to MPPT Strategy for PV System Enhancing CsSn0.5Ge0.5I3 Perovskite Solar Cell Performance via Cu2O Hole Transport Layer Integration Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS-1D Software Maximizing Conversion Efficiency: A Numerical Analysis on P+ a-SiC/i Interface/n-Si Heterojunction Solar Cells with AMPS-1D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1