Tao Zheng, Haotian Li, Houtian He, Zhenyu Lei, Shangce Gao
{"title":"用于风电场布局优化的自适应策略集成遗传算法","authors":"Tao Zheng, Haotian Li, Houtian He, Zhenyu Lei, Shangce Gao","doi":"10.1007/s42235-024-00498-3","DOIUrl":null,"url":null,"abstract":"<div><p>Energy issues have always been one of the most significant concerns for scientists worldwide. With the ongoing over exploitation and continued outbreaks of wars, traditional energy sources face the threat of depletion. Wind energy is a readily available and sustainable energy source. Wind farm layout optimization problem, through scientifically arranging wind turbines, significantly enhances the efficiency of harnessing wind energy. Meta-heuristic algorithms have been widely employed in wind farm layout optimization. This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm, referred to as AIGA, for optimizing wind farm layout problems. The adaptive strategy dynamically adjusts the placement of wind turbines, leading to a substantial improvement in energy utilization efficiency within the wind farm. In this study, AIGA is tested in four different wind conditions, alongside four other classical algorithms, to assess their energy conversion efficiency within the wind farm. Experimental results demonstrate a notable advantage of AIGA.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1522 - 1540"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Strategy-incorporated Integer Genetic Algorithm for Wind Farm Layout Optimization\",\"authors\":\"Tao Zheng, Haotian Li, Houtian He, Zhenyu Lei, Shangce Gao\",\"doi\":\"10.1007/s42235-024-00498-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy issues have always been one of the most significant concerns for scientists worldwide. With the ongoing over exploitation and continued outbreaks of wars, traditional energy sources face the threat of depletion. Wind energy is a readily available and sustainable energy source. Wind farm layout optimization problem, through scientifically arranging wind turbines, significantly enhances the efficiency of harnessing wind energy. Meta-heuristic algorithms have been widely employed in wind farm layout optimization. This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm, referred to as AIGA, for optimizing wind farm layout problems. The adaptive strategy dynamically adjusts the placement of wind turbines, leading to a substantial improvement in energy utilization efficiency within the wind farm. In this study, AIGA is tested in four different wind conditions, alongside four other classical algorithms, to assess their energy conversion efficiency within the wind farm. Experimental results demonstrate a notable advantage of AIGA.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 3\",\"pages\":\"1522 - 1540\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00498-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00498-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An Adaptive Strategy-incorporated Integer Genetic Algorithm for Wind Farm Layout Optimization
Energy issues have always been one of the most significant concerns for scientists worldwide. With the ongoing over exploitation and continued outbreaks of wars, traditional energy sources face the threat of depletion. Wind energy is a readily available and sustainable energy source. Wind farm layout optimization problem, through scientifically arranging wind turbines, significantly enhances the efficiency of harnessing wind energy. Meta-heuristic algorithms have been widely employed in wind farm layout optimization. This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm, referred to as AIGA, for optimizing wind farm layout problems. The adaptive strategy dynamically adjusts the placement of wind turbines, leading to a substantial improvement in energy utilization efficiency within the wind farm. In this study, AIGA is tested in four different wind conditions, alongside four other classical algorithms, to assess their energy conversion efficiency within the wind farm. Experimental results demonstrate a notable advantage of AIGA.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.