Ana Aragón-González, Allan C Shaw, Jannigje R Kok, Florence S Roussel, Cleide dos Santos Souza, Sarah M Granger, Tatyana Vetter, Yolanda de Diego, Kathrin C Meyer, Selina N Beal, Pamela J Shaw, Laura Ferraiuolo
{"title":"C9ORF72 患者衍生内皮细胞导致血脑屏障破坏并引发神经毒性","authors":"Ana Aragón-González, Allan C Shaw, Jannigje R Kok, Florence S Roussel, Cleide dos Santos Souza, Sarah M Granger, Tatyana Vetter, Yolanda de Diego, Kathrin C Meyer, Selina N Beal, Pamela J Shaw, Laura Ferraiuolo","doi":"10.1186/s12987-024-00528-6","DOIUrl":null,"url":null,"abstract":"The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons. ","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"44 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C9ORF72 patient-derived endothelial cells drive blood-brain barrier disruption and contribute to neurotoxicity\",\"authors\":\"Ana Aragón-González, Allan C Shaw, Jannigje R Kok, Florence S Roussel, Cleide dos Santos Souza, Sarah M Granger, Tatyana Vetter, Yolanda de Diego, Kathrin C Meyer, Selina N Beal, Pamela J Shaw, Laura Ferraiuolo\",\"doi\":\"10.1186/s12987-024-00528-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons. \",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00528-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00528-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
血脑屏障(BBB)是连接大脑和血液的一个高度复杂的动态界面,在维持大脑平衡方面发挥着至关重要的作用。血脑屏障功能障碍与包括肌萎缩性脊髓侧索硬化症(ALS)在内的多种神经退行性疾病有关;然而,人们对血脑屏障在神经退行性疾病中的作用研究不足。我们利用来自 5 位携带 C9ORF72 突变的患者供体的细胞,建立了 ALS 患者来源的 BBB 模型。来自 C9ORF72-ALS 患者的脑微血管内皮样细胞(BMEC-like cells)显示出基因表达改变、屏障完整性受损和 P 糖蛋白转运体活性增加。此外,线粒体代谢测试表明,C9ORF72-ALS BMECs 的基础糖酵解显著减少,同时基础呼吸和 ATP 链接呼吸增加。此外,我们的研究还发现,C9-ALS 衍生的星形胶质细胞会进一步影响 BMECs 的功能,并影响葡萄糖转运体 Glut-1 的表达。最后,C9ORF72 患者衍生的 BMECs 通过细胞自主机制形成漏屏障,并对运动神经元具有神经毒性。
C9ORF72 patient-derived endothelial cells drive blood-brain barrier disruption and contribute to neurotoxicity
The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).