原子 H 和 O 在金属铂和铁以及双金属铂 x 铁 y 表面上的化学吸附的 Ab initio 计算

Tobias Wittemann, Halil İbrahim Sözen, Mehtap Oezaslan, Thorsten Klüner
{"title":"原子 H 和 O 在金属铂和铁以及双金属铂 x 铁 y 表面上的化学吸附的 Ab initio 计算","authors":"Tobias Wittemann, Halil İbrahim Sözen, Mehtap Oezaslan, Thorsten Klüner","doi":"10.1515/znb-2023-0087","DOIUrl":null,"url":null,"abstract":"Understanding the chemisorption of atoms on precious metal surfaces is of substantial interest for the rational design of heterogeneous and electrochemical catalysts. In this study, we report density functional theory (DFT) investigations of the chemisorption of atomic H and O on bimetallic Pt<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Ir<jats:sub> <jats:italic>y</jats:italic> </jats:sub>(111) surfaces for bifunctional anode catalyst materials in polymer electrolyte membrane (PEM) fuel cells. We found that for both adsorbates, the adsorption on the Pt(111) surface is in general less exothermic than on the Ir(111) surface. Our study has revealed that chemisorption on the bimetallic surfaces becomes more stable with increasing number of Ir surface atoms at the adsorption site. While for hydrogen atoms the ONTOP sites yield the most negative adsorption energies, the chemisorption of oxygen atoms appears to be most stable on the FCC sites for both the mono- and bimetallic surfaces. Using the <jats:italic>ab initio</jats:italic> thermodynamics approach, we calculated phase diagrams for the chemisorption of H and O atoms on these metal surfaces in order to transfer our findings to finite temperature and pressure conditions. Our theoretical results may provide an improved understanding of the hydrogen oxidation reaction (HOR) and oxygen evolution reaction (OER) on intermetallic Pt<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Ir<jats:sub> <jats:italic>y</jats:italic> </jats:sub>(111) surfaces and may be helpful for the rational design of new bifunctional PEM fuel cell anode catalyst materials.","PeriodicalId":23831,"journal":{"name":"Zeitschrift für Naturforschung B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces\",\"authors\":\"Tobias Wittemann, Halil İbrahim Sözen, Mehtap Oezaslan, Thorsten Klüner\",\"doi\":\"10.1515/znb-2023-0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the chemisorption of atoms on precious metal surfaces is of substantial interest for the rational design of heterogeneous and electrochemical catalysts. In this study, we report density functional theory (DFT) investigations of the chemisorption of atomic H and O on bimetallic Pt<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Ir<jats:sub> <jats:italic>y</jats:italic> </jats:sub>(111) surfaces for bifunctional anode catalyst materials in polymer electrolyte membrane (PEM) fuel cells. We found that for both adsorbates, the adsorption on the Pt(111) surface is in general less exothermic than on the Ir(111) surface. Our study has revealed that chemisorption on the bimetallic surfaces becomes more stable with increasing number of Ir surface atoms at the adsorption site. While for hydrogen atoms the ONTOP sites yield the most negative adsorption energies, the chemisorption of oxygen atoms appears to be most stable on the FCC sites for both the mono- and bimetallic surfaces. Using the <jats:italic>ab initio</jats:italic> thermodynamics approach, we calculated phase diagrams for the chemisorption of H and O atoms on these metal surfaces in order to transfer our findings to finite temperature and pressure conditions. Our theoretical results may provide an improved understanding of the hydrogen oxidation reaction (HOR) and oxygen evolution reaction (OER) on intermetallic Pt<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Ir<jats:sub> <jats:italic>y</jats:italic> </jats:sub>(111) surfaces and may be helpful for the rational design of new bifunctional PEM fuel cell anode catalyst materials.\",\"PeriodicalId\":23831,\"journal\":{\"name\":\"Zeitschrift für Naturforschung B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-2023-0087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-2023-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解贵金属表面原子的化学吸附对合理设计异相催化剂和电化学催化剂具有重要意义。在本研究中,我们报告了密度泛函理论(DFT)对 H 原子和 O 原子在双金属 Pt x Ir y (111) 表面上的化学吸附的研究,这些催化剂可用于聚合物电解质膜燃料电池(PEM)中的双功能阳极催化剂材料。我们发现,对于这两种吸附剂,铂(111)表面的吸附放热一般低于铱(111)表面。我们的研究表明,随着吸附位点上 Ir 表面原子数的增加,双金属表面上的化学吸附变得更加稳定。对于氢原子来说,ONTOP 位点产生的吸附能是最负的,而对于单金属和双金属表面来说,氧原子在 FCC 位点的化学吸附似乎是最稳定的。利用 ab initio 热力学方法,我们计算了这些金属表面上 H 原子和 O 原子化学吸附的相图,以便将我们的发现转移到有限温度和压力条件下。我们的理论结果可加深对金属间铂 x 铱 y (111) 表面氢氧化反应和氧进化反应的理解,并有助于合理设计新型双功能 PEM 燃料电池阳极催化剂材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
Understanding the chemisorption of atoms on precious metal surfaces is of substantial interest for the rational design of heterogeneous and electrochemical catalysts. In this study, we report density functional theory (DFT) investigations of the chemisorption of atomic H and O on bimetallic Pt x Ir y (111) surfaces for bifunctional anode catalyst materials in polymer electrolyte membrane (PEM) fuel cells. We found that for both adsorbates, the adsorption on the Pt(111) surface is in general less exothermic than on the Ir(111) surface. Our study has revealed that chemisorption on the bimetallic surfaces becomes more stable with increasing number of Ir surface atoms at the adsorption site. While for hydrogen atoms the ONTOP sites yield the most negative adsorption energies, the chemisorption of oxygen atoms appears to be most stable on the FCC sites for both the mono- and bimetallic surfaces. Using the ab initio thermodynamics approach, we calculated phase diagrams for the chemisorption of H and O atoms on these metal surfaces in order to transfer our findings to finite temperature and pressure conditions. Our theoretical results may provide an improved understanding of the hydrogen oxidation reaction (HOR) and oxygen evolution reaction (OER) on intermetallic Pt x Ir y (111) surfaces and may be helpful for the rational design of new bifunctional PEM fuel cell anode catalyst materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brass corrosion – dezincification in hydrochloric acid A base-promoted synthesis of 3,4-dihydro-2(1H)-quinazolinones Comprehensive structural evaluation of the quaternary chalcogenide Ag2CdSnSe4 Refrachor (F) – seventy-year-old tool and a contemporary observation: estimation of equilibrium compositions of 1H- and 2H-tautomers of tetrazole and 1,2,3-triazole and imine–amine composition of acetaldimine–vinylamine tautomerism Selectfluor-triggered C–H halogenations of enaminones with copper(I) halide (CuX) for the synthesis of 3-halochromones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1