{"title":"氮掺杂 CuTa2O6 包晶中扩展可见光吸收的起源:铜缺陷的作用","authors":"Morten Weiss, Anja Hofmann, Roland Marschall","doi":"10.1515/znb-2023-0094","DOIUrl":null,"url":null,"abstract":"The optical band gap of the semiconductor CuTa<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>, synthesised <jats:italic>via</jats:italic> solid-state reaction, can be greatly reduced by annealing in ammonia, which leads to a significant red-shift of the visible light absorption. Using X-ray photoelectron spectroscopy (XPS), we have shown that this absorption extension does not result from the incorporation of nitrogen, but can be attributed to copper defects formed under the reducing conditions of ammonia treatment. Photocatalytic hydrogen evolution experiments were used to investigate the influence of these defects on the photocatalytic performance. We have further shown that CuTa<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> with similar increased visible light absorption can be prepared by annealing with an organic reducing agent – sodium citrate – in inert gas atmosphere.","PeriodicalId":23831,"journal":{"name":"Zeitschrift für Naturforschung B","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects\",\"authors\":\"Morten Weiss, Anja Hofmann, Roland Marschall\",\"doi\":\"10.1515/znb-2023-0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical band gap of the semiconductor CuTa<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>, synthesised <jats:italic>via</jats:italic> solid-state reaction, can be greatly reduced by annealing in ammonia, which leads to a significant red-shift of the visible light absorption. Using X-ray photoelectron spectroscopy (XPS), we have shown that this absorption extension does not result from the incorporation of nitrogen, but can be attributed to copper defects formed under the reducing conditions of ammonia treatment. Photocatalytic hydrogen evolution experiments were used to investigate the influence of these defects on the photocatalytic performance. We have further shown that CuTa<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> with similar increased visible light absorption can be prepared by annealing with an organic reducing agent – sodium citrate – in inert gas atmosphere.\",\"PeriodicalId\":23831,\"journal\":{\"name\":\"Zeitschrift für Naturforschung B\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-2023-0094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-2023-0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过固态反应合成的半导体 CuTa2O6 在氨气中退火后,其光带隙会大大减小,从而导致可见光吸收的显著红移。利用 X 射线光电子能谱(XPS),我们证明了这种吸收扩展不是由于氮的加入,而是由于在氨处理的还原条件下形成的铜缺陷。我们利用光催化氢进化实验研究了这些缺陷对光催化性能的影响。我们还进一步证明,在惰性气体环境中使用有机还原剂柠檬酸钠退火,可以制备出具有类似的可见光吸收率增加的 CuTa2O6。
Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
The optical band gap of the semiconductor CuTa2O6, synthesised via solid-state reaction, can be greatly reduced by annealing in ammonia, which leads to a significant red-shift of the visible light absorption. Using X-ray photoelectron spectroscopy (XPS), we have shown that this absorption extension does not result from the incorporation of nitrogen, but can be attributed to copper defects formed under the reducing conditions of ammonia treatment. Photocatalytic hydrogen evolution experiments were used to investigate the influence of these defects on the photocatalytic performance. We have further shown that CuTa2O6 with similar increased visible light absorption can be prepared by annealing with an organic reducing agent – sodium citrate – in inert gas atmosphere.