利用航拍照片估算面积的最佳点网格密度

IF 1.8 3区 农林科学 Q2 FORESTRY Journal of Forestry Pub Date : 2024-04-10 DOI:10.1093/jof/82.7.428
Lawrence R. Gering, Robert L. Bailey
{"title":"利用航拍照片估算面积的最佳点网格密度","authors":"Lawrence R. Gering, Robert L. Bailey","doi":"10.1093/jof/82.7.428","DOIUrl":null,"url":null,"abstract":"Dot-count sampling to estimate area from 1:12,000 scale aerial photographs was tested with grid densities of 4, 16, and 49 dots per square inch. All three densities gave unbiased estimates. Variances may be validly estimated by assuming random sampling and the binomial model when dot density is greater than 27--the optimum density for per-dot reduction in variance. The coefficient of variation can be predicted from dot density of the grid and estimated proportion of dots in the cover type of interest.","PeriodicalId":15821,"journal":{"name":"Journal of Forestry","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimum Dot-Grid Density for Area Estimation with Aerial Photographs\",\"authors\":\"Lawrence R. Gering, Robert L. Bailey\",\"doi\":\"10.1093/jof/82.7.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dot-count sampling to estimate area from 1:12,000 scale aerial photographs was tested with grid densities of 4, 16, and 49 dots per square inch. All three densities gave unbiased estimates. Variances may be validly estimated by assuming random sampling and the binomial model when dot density is greater than 27--the optimum density for per-dot reduction in variance. The coefficient of variation can be predicted from dot density of the grid and estimated proportion of dots in the cover type of interest.\",\"PeriodicalId\":15821,\"journal\":{\"name\":\"Journal of Forestry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forestry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jof/82.7.428\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jof/82.7.428","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

通过每平方英寸 4、16 和 49 个点的网格密度测试了从 1:12,000 比例航空照片中估计面积的点计数取样方法。所有三种密度都能得出无偏的估计值。当网点密度大于 27(每网点减少方差的最佳密度)时,假定随机抽样和二项式模型,方差的估算是有效的。变异系数可根据网格的点密度和相关植被类型中点的估计比例进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimum Dot-Grid Density for Area Estimation with Aerial Photographs
Dot-count sampling to estimate area from 1:12,000 scale aerial photographs was tested with grid densities of 4, 16, and 49 dots per square inch. All three densities gave unbiased estimates. Variances may be validly estimated by assuming random sampling and the binomial model when dot density is greater than 27--the optimum density for per-dot reduction in variance. The coefficient of variation can be predicted from dot density of the grid and estimated proportion of dots in the cover type of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Forestry
Journal of Forestry 农林科学-林学
CiteScore
4.90
自引率
8.70%
发文量
45
审稿时长
>24 weeks
期刊介绍: The Journal of Forestry is the most widely circulated scholarly forestry journal in the world. In print since 1902, the mission of the Journal of Forestry is to advance the profession of forestry by keeping forest management professionals informed about significant developments and ideas in the many facets of forestry. The Journal is published bimonthly: January, March, May, July, September, and November.
期刊最新文献
Do Experimental Forests and Ranges of the Southeastern United States Represent the Climate, Ecosystem Structure, and Ecosystem Functions of the Region? Quantifying the Variability of “Fixed-Width” Buffers on Harvested Lands in Western Oregon and Washington An Analysis of Political Identity Development in State Forest Advisory Groups Wildfire Management Strategy and Its Relation to Operational Risk Ten-Year Response of Riparian-Associated Songbirds to Implementation of Streamside Management Zones in Watershed-Scale Harvests in the Appalachian Mountains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1