利用 YUKI-RANDOM-FOREST 对使用 CFRP 修复的开裂管道进行补丁设计的最佳预测

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Arabian Journal for Science and Engineering Pub Date : 2024-04-04 DOI:10.1007/s13369-024-08777-1
Abdelmoumin Oulad Brahim, Roberto Capozucca, Samir Khatir, Noureddine Fahem, Brahim Benaissa, Thanh Cuong-Le
{"title":"利用 YUKI-RANDOM-FOREST 对使用 CFRP 修复的开裂管道进行补丁设计的最佳预测","authors":"Abdelmoumin Oulad Brahim,&nbsp;Roberto Capozucca,&nbsp;Samir Khatir,&nbsp;Noureddine Fahem,&nbsp;Brahim Benaissa,&nbsp;Thanh Cuong-Le","doi":"10.1007/s13369-024-08777-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the effectiveness of a hybrid YUKI-RANDOM-FOREST, Particle Swarm Optimization-YUKI (PSO-YUKI), and balancing composite motion optimization algorithm (BCMO) based on artificial neural networks (ANN) for the best prediction of patch design considering the maximum principal stress. The study compares the maximum principal stress in a damaged pipe under different composite patch designs. Robust models have been developed and utilized in various applications. The research investigates the influence of cracks on the mechanical characteristics of API X70 steel in a test pipe under critical pressure. The numerical model employs the extended finite element method (XFEM) to simulate notches. Extending the optimization technique, the study examines the effect of crack presence in a pipeline section under internal pressure without and with composite repairs on the maximum principal stress. The sensitivity of stress is analyzed with respect to the design parameters of the composite patch. Finally, YUKI-RANDOM-FOREST, NN-PSO-YUKI, and NN-BCMO, with different parameters and hidden layer sizes are employed to predict the maximum principal stress under different composite patch designs, and yielding minimal error. Once the database was built, our model was prepared to predict various situations at the composite patch level. Compared to other methods, the obtained results with hybrid YUKI-RANDOM-FOREST are effective. The investigation technique is relevant to real-world engineering applications, structural safety control, and design processes.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"49 11","pages":"15085 - 15102"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Prediction for Patch Design Using YUKI-RANDOM-FOREST in a Cracked Pipeline Repaired with CFRP\",\"authors\":\"Abdelmoumin Oulad Brahim,&nbsp;Roberto Capozucca,&nbsp;Samir Khatir,&nbsp;Noureddine Fahem,&nbsp;Brahim Benaissa,&nbsp;Thanh Cuong-Le\",\"doi\":\"10.1007/s13369-024-08777-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the effectiveness of a hybrid YUKI-RANDOM-FOREST, Particle Swarm Optimization-YUKI (PSO-YUKI), and balancing composite motion optimization algorithm (BCMO) based on artificial neural networks (ANN) for the best prediction of patch design considering the maximum principal stress. The study compares the maximum principal stress in a damaged pipe under different composite patch designs. Robust models have been developed and utilized in various applications. The research investigates the influence of cracks on the mechanical characteristics of API X70 steel in a test pipe under critical pressure. The numerical model employs the extended finite element method (XFEM) to simulate notches. Extending the optimization technique, the study examines the effect of crack presence in a pipeline section under internal pressure without and with composite repairs on the maximum principal stress. The sensitivity of stress is analyzed with respect to the design parameters of the composite patch. Finally, YUKI-RANDOM-FOREST, NN-PSO-YUKI, and NN-BCMO, with different parameters and hidden layer sizes are employed to predict the maximum principal stress under different composite patch designs, and yielding minimal error. Once the database was built, our model was prepared to predict various situations at the composite patch level. Compared to other methods, the obtained results with hybrid YUKI-RANDOM-FOREST are effective. The investigation technique is relevant to real-world engineering applications, structural safety control, and design processes.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"49 11\",\"pages\":\"15085 - 15102\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-08777-1\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08777-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于人工神经网络(ANN)的混合 YUKI-RANDOM-FOREST、粒子群优化-YUKI(PSO-YUKI)和平衡复合运动优化算法(BCMO)对考虑最大主应力的补片设计进行最佳预测的有效性。该研究比较了不同复合材料补片设计下受损管道的最大主应力。已开发出鲁棒性模型并将其用于各种应用中。研究调查了在临界压力下,裂缝对 API X70 钢管机械特性的影响。数值模型采用扩展有限元法 (XFEM) 模拟缺口。该研究扩展了优化技术,考察了在无复合材料修复和有复合材料修复的情况下,内压下管道断面中裂纹的存在对最大主应力的影响。分析了应力对复合材料修补设计参数的敏感性。最后,采用了 YUKI-RANDOM-FOREST、NN-PSO-YUKI 和 NN-BCMO(具有不同的参数和隐藏层大小)来预测不同复合材料修补设计下的最大主应力,并将误差降到最低。数据库建立后,我们的模型就可以预测复合材料贴片层面的各种情况。与其他方法相比,混合 YUKI-RANDOM-FOREST 方法的结果非常有效。该研究技术与现实世界的工程应用、结构安全控制和设计过程息息相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Prediction for Patch Design Using YUKI-RANDOM-FOREST in a Cracked Pipeline Repaired with CFRP

This paper presents the effectiveness of a hybrid YUKI-RANDOM-FOREST, Particle Swarm Optimization-YUKI (PSO-YUKI), and balancing composite motion optimization algorithm (BCMO) based on artificial neural networks (ANN) for the best prediction of patch design considering the maximum principal stress. The study compares the maximum principal stress in a damaged pipe under different composite patch designs. Robust models have been developed and utilized in various applications. The research investigates the influence of cracks on the mechanical characteristics of API X70 steel in a test pipe under critical pressure. The numerical model employs the extended finite element method (XFEM) to simulate notches. Extending the optimization technique, the study examines the effect of crack presence in a pipeline section under internal pressure without and with composite repairs on the maximum principal stress. The sensitivity of stress is analyzed with respect to the design parameters of the composite patch. Finally, YUKI-RANDOM-FOREST, NN-PSO-YUKI, and NN-BCMO, with different parameters and hidden layer sizes are employed to predict the maximum principal stress under different composite patch designs, and yielding minimal error. Once the database was built, our model was prepared to predict various situations at the composite patch level. Compared to other methods, the obtained results with hybrid YUKI-RANDOM-FOREST are effective. The investigation technique is relevant to real-world engineering applications, structural safety control, and design processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Phase Change Materials in High Heat Storage Application: A Review Review on Solid-State Narrow and Wide-Band Power Amplifier Comprehensive Overview on the Present State and Evolution of Global Warming, Climate Change, Greenhouse Gasses and Renewable Energy Rotor Temperature Prediction of PMSM Based on LSTM Neural Networks A Hierarchical Parametric and Non-Parametric Forecasting Source Models with Uncertainties: 10 Years Ahead Prediction of Sources for Electric Energy Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1