Xvpfloat:用于可变扩展精度浮点运算的 RISC-V ISA 扩展

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-04-02 DOI:10.1109/TC.2024.3383964
Eric Guthmuller;César Fuguet;Andrea Bocco;Jérôme Fereyre;Riccardo Alidori;Ihsane Tahir;Yves Durand
{"title":"Xvpfloat:用于可变扩展精度浮点运算的 RISC-V ISA 扩展","authors":"Eric Guthmuller;César Fuguet;Andrea Bocco;Jérôme Fereyre;Riccardo Alidori;Ihsane Tahir;Yves Durand","doi":"10.1109/TC.2024.3383964","DOIUrl":null,"url":null,"abstract":"A key concern in the field of scientific computation is the convergence of numerical solvers when applied to large problems. The numerical workarounds used to improve convergence are often problem specific, time consuming and require skilled numerical analysts. An alternative is to simply increase the working precision of the computation, but this is difficult due to the lack of efficient hardware support for extended precision. We propose \n<i>Xvpfloat</i>\n, a RISC-V ISA extension for dynamically variable and extended precision computation, a hardware implementation and a full software stack. Our architecture provides a comprehensive implementation of this ISA, with up to 512 bits of significand, including full support for common rounding modes and heterogeneous precision arithmetic operations. The memory subsystem handles IEEE 754 extendable formats, and features specialized indexed loads and stores with hardware-assisted prefetching. This processor can either operate standalone or as an accelerator for a general purpose host. We demonstrate that the number of solver iterations can be reduced up to \n<inline-formula><tex-math>$5\\boldsymbol{\\times}$</tex-math></inline-formula>\n and, for certain, difficult problems, convergence is only possible with very high precision (\n<inline-formula><tex-math>$\\boldsymbol{\\geq}$</tex-math></inline-formula>\n384 bits). This accelerator provides a new approach to accelerate large scale scientific computing.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 7","pages":"1683-1697"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488759","citationCount":"0","resultStr":"{\"title\":\"Xvpfloat: RISC-V ISA Extension for Variable Extended Precision Floating Point Computation\",\"authors\":\"Eric Guthmuller;César Fuguet;Andrea Bocco;Jérôme Fereyre;Riccardo Alidori;Ihsane Tahir;Yves Durand\",\"doi\":\"10.1109/TC.2024.3383964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key concern in the field of scientific computation is the convergence of numerical solvers when applied to large problems. The numerical workarounds used to improve convergence are often problem specific, time consuming and require skilled numerical analysts. An alternative is to simply increase the working precision of the computation, but this is difficult due to the lack of efficient hardware support for extended precision. We propose \\n<i>Xvpfloat</i>\\n, a RISC-V ISA extension for dynamically variable and extended precision computation, a hardware implementation and a full software stack. Our architecture provides a comprehensive implementation of this ISA, with up to 512 bits of significand, including full support for common rounding modes and heterogeneous precision arithmetic operations. The memory subsystem handles IEEE 754 extendable formats, and features specialized indexed loads and stores with hardware-assisted prefetching. This processor can either operate standalone or as an accelerator for a general purpose host. We demonstrate that the number of solver iterations can be reduced up to \\n<inline-formula><tex-math>$5\\\\boldsymbol{\\\\times}$</tex-math></inline-formula>\\n and, for certain, difficult problems, convergence is only possible with very high precision (\\n<inline-formula><tex-math>$\\\\boldsymbol{\\\\geq}$</tex-math></inline-formula>\\n384 bits). This accelerator provides a new approach to accelerate large scale scientific computing.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 7\",\"pages\":\"1683-1697\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488759\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10488759/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10488759/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

科学计算领域的一个关键问题是数值求解器在应用于大型问题时的收敛性。用于提高收敛性的数值变通方法往往针对具体问题,耗费时间,而且需要熟练的数值分析人员。另一种方法是简单地提高计算的工作精度,但由于缺乏对扩展精度的有效硬件支持,这种方法很难实现。我们提出了 Xvpfloat,一种用于动态可变和扩展精度计算的 RISC-V ISA 扩展、硬件实现和完整的软件栈。我们的架构提供了该 ISA 的全面实施,具有高达 512 位的示值,包括对常见舍入模式和异构精度算术运算的全面支持。内存子系统可处理 IEEE 754 扩展格式,并具有专门的索引加载和存储功能以及硬件辅助预取功能。该处理器既可独立运行,也可作为通用主机的加速器。我们证明,求解器迭代次数最多可减少 5 美元(oldsymbol{times}$),而且对于某些困难问题,只有在精度非常高(384 位)的情况下才有可能收敛。该加速器为加速大规模科学计算提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Xvpfloat: RISC-V ISA Extension for Variable Extended Precision Floating Point Computation
A key concern in the field of scientific computation is the convergence of numerical solvers when applied to large problems. The numerical workarounds used to improve convergence are often problem specific, time consuming and require skilled numerical analysts. An alternative is to simply increase the working precision of the computation, but this is difficult due to the lack of efficient hardware support for extended precision. We propose Xvpfloat , a RISC-V ISA extension for dynamically variable and extended precision computation, a hardware implementation and a full software stack. Our architecture provides a comprehensive implementation of this ISA, with up to 512 bits of significand, including full support for common rounding modes and heterogeneous precision arithmetic operations. The memory subsystem handles IEEE 754 extendable formats, and features specialized indexed loads and stores with hardware-assisted prefetching. This processor can either operate standalone or as an accelerator for a general purpose host. We demonstrate that the number of solver iterations can be reduced up to $5\boldsymbol{\times}$ and, for certain, difficult problems, convergence is only possible with very high precision ( $\boldsymbol{\geq}$ 384 bits). This accelerator provides a new approach to accelerate large scale scientific computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1