Yong-xin Mai, Zhi-peng Li, Feng-xiang Pang, Shu-ting Zhou, Nan Li, Yu-yan Wang, Jin-fang Zhang
{"title":"欧库宾通过lncRNA-H19驱动的Wnt/β-Catenin信号调控轴促进成骨分化并促进骨形成","authors":"Yong-xin Mai, Zhi-peng Li, Feng-xiang Pang, Shu-ting Zhou, Nan Li, Yu-yan Wang, Jin-fang Zhang","doi":"10.1155/2024/5388064","DOIUrl":null,"url":null,"abstract":"<i>Objectives</i>. Traditional Chinese medicine <i>Cortex Eucommiae</i> has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from <i>Cortex Eucommiae</i>, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. <i>Materials and Methods</i>. The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/<i>β</i>-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the <i>in vivo</i> effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. <i>Results</i>. In the present study, Aucubin was found to significantly promote osteogenic differentiation <i>in vitro</i> and stimulated bone formation <i>in vivo</i>. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/<i>β</i>-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/<i>β</i>-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/<i>β</i>-catenin signaling through promoting H19 expression. <i>Conclusion</i>. Our results demonstrated that Aucubin promoted osteogenesis <i>in vitro</i> and facilitated fracture healing <i>in vivo</i> through the H19-Wnt/<i>β</i>-catenin regulatory axis.","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"18 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aucubin Promotes Osteogenic Differentiation and Facilitates Bone Formation through the lncRNA-H19 Driven Wnt/β-Catenin Signaling Regulatory Axis\",\"authors\":\"Yong-xin Mai, Zhi-peng Li, Feng-xiang Pang, Shu-ting Zhou, Nan Li, Yu-yan Wang, Jin-fang Zhang\",\"doi\":\"10.1155/2024/5388064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Objectives</i>. Traditional Chinese medicine <i>Cortex Eucommiae</i> has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from <i>Cortex Eucommiae</i>, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. <i>Materials and Methods</i>. The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/<i>β</i>-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the <i>in vivo</i> effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. <i>Results</i>. In the present study, Aucubin was found to significantly promote osteogenic differentiation <i>in vitro</i> and stimulated bone formation <i>in vivo</i>. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/<i>β</i>-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/<i>β</i>-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/<i>β</i>-catenin signaling through promoting H19 expression. <i>Conclusion</i>. Our results demonstrated that Aucubin promoted osteogenesis <i>in vitro</i> and facilitated fracture healing <i>in vivo</i> through the H19-Wnt/<i>β</i>-catenin regulatory axis.\",\"PeriodicalId\":21962,\"journal\":{\"name\":\"Stem Cells International\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5388064\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/5388064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Aucubin Promotes Osteogenic Differentiation and Facilitates Bone Formation through the lncRNA-H19 Driven Wnt/β-Catenin Signaling Regulatory Axis
Objectives. Traditional Chinese medicine Cortex Eucommiae has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from Cortex Eucommiae, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. Materials and Methods. The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/β-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the in vivo effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. Results. In the present study, Aucubin was found to significantly promote osteogenic differentiation in vitro and stimulated bone formation in vivo. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/β-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/β-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/β-catenin signaling through promoting H19 expression. Conclusion. Our results demonstrated that Aucubin promoted osteogenesis in vitro and facilitated fracture healing in vivo through the H19-Wnt/β-catenin regulatory axis.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.