双氮双环辛烷 β-内酰胺酶抑制剂杜洛巴坦能抑制结核分枝杆菌的 BlaC 和肽聚糖转肽酶

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2024-04-15 DOI:10.1021/acsinfecdis.4c00119
Mary Nantongo, David C. Nguyen, Christopher R. Bethel, Magdalena A. Taracila, Qing Li, Khalid M. Dousa, Eunjeong Shin, Sebastian G. Kurz, Liem Nguyen, Barry N. Kreiswirth, W. Henry Boom, Mark S. Plummer and Robert A. Bonomo*, 
{"title":"双氮双环辛烷 β-内酰胺酶抑制剂杜洛巴坦能抑制结核分枝杆菌的 BlaC 和肽聚糖转肽酶","authors":"Mary Nantongo,&nbsp;David C. Nguyen,&nbsp;Christopher R. Bethel,&nbsp;Magdalena A. Taracila,&nbsp;Qing Li,&nbsp;Khalid M. Dousa,&nbsp;Eunjeong Shin,&nbsp;Sebastian G. Kurz,&nbsp;Liem Nguyen,&nbsp;Barry N. Kreiswirth,&nbsp;W. Henry Boom,&nbsp;Mark S. Plummer and Robert A. Bonomo*,&nbsp;","doi":"10.1021/acsinfecdis.4c00119","DOIUrl":null,"url":null,"abstract":"<p >Peptidoglycan synthesis is an underutilized drug target in <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the <i>Mtb</i> β-lactamase, and multiple <i>Mtb</i> peptidoglycan transpeptidases (PonA1, Ldt<sub>Mt1</sub>, Ldt<sub>Mt2</sub>, Ldt<sub>Mt3</sub>, and Ldt<sub>Mt5</sub>). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except Ldt<sub>Mt5</sub>. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (<i>K</i><sub>I app</sub> 9.2 ± 0.9 μM, <i>k</i><sub>2</sub>/<i>K</i> 5600 ± 560 M<sup>–1</sup> s<sup>–1</sup>) and similar to clavulanate (<i>K</i><sub>I app</sub> 3.3 ± 0.6 μM, <i>k</i><sub>2</sub>/<i>K</i> 8400 ± 840 M<sup>–1</sup> s<sup>–1</sup>); however, durlobactam had a lower turnover number (<i>t</i><sub>n</sub> = <i>k</i><sub>cat</sub>/<i>k</i><sub>inact</sub>) than clavulanate (1 and 8, respectively). <i>K</i><sub>I app</sub> values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and Ldt<sub>Mt2</sub>. Antibiotic susceptibility testing was conducted on 11 <i>Mtb</i> isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5–16 μg/mL, similar to the ranges for meropenem (1–32 μg/mL) and imipenem (0.5–64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem–durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and <i>Mtb</i> peptidoglycan transpeptidases.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durlobactam, a Diazabicyclooctane β-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis\",\"authors\":\"Mary Nantongo,&nbsp;David C. Nguyen,&nbsp;Christopher R. Bethel,&nbsp;Magdalena A. Taracila,&nbsp;Qing Li,&nbsp;Khalid M. Dousa,&nbsp;Eunjeong Shin,&nbsp;Sebastian G. Kurz,&nbsp;Liem Nguyen,&nbsp;Barry N. Kreiswirth,&nbsp;W. Henry Boom,&nbsp;Mark S. Plummer and Robert A. Bonomo*,&nbsp;\",\"doi\":\"10.1021/acsinfecdis.4c00119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peptidoglycan synthesis is an underutilized drug target in <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the <i>Mtb</i> β-lactamase, and multiple <i>Mtb</i> peptidoglycan transpeptidases (PonA1, Ldt<sub>Mt1</sub>, Ldt<sub>Mt2</sub>, Ldt<sub>Mt3</sub>, and Ldt<sub>Mt5</sub>). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except Ldt<sub>Mt5</sub>. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (<i>K</i><sub>I app</sub> 9.2 ± 0.9 μM, <i>k</i><sub>2</sub>/<i>K</i> 5600 ± 560 M<sup>–1</sup> s<sup>–1</sup>) and similar to clavulanate (<i>K</i><sub>I app</sub> 3.3 ± 0.6 μM, <i>k</i><sub>2</sub>/<i>K</i> 8400 ± 840 M<sup>–1</sup> s<sup>–1</sup>); however, durlobactam had a lower turnover number (<i>t</i><sub>n</sub> = <i>k</i><sub>cat</sub>/<i>k</i><sub>inact</sub>) than clavulanate (1 and 8, respectively). <i>K</i><sub>I app</sub> values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and Ldt<sub>Mt2</sub>. Antibiotic susceptibility testing was conducted on 11 <i>Mtb</i> isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5–16 μg/mL, similar to the ranges for meropenem (1–32 μg/mL) and imipenem (0.5–64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem–durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and <i>Mtb</i> peptidoglycan transpeptidases.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00119\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00119","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

肽聚糖合成是结核分枝杆菌(Mtb)中一个未得到充分利用的药物靶点。重氮双环辛烷(DBO)是一类广谱β-内酰胺酶抑制剂,也能抑制某些在分枝杆菌细胞壁合成过程中起重要作用的肽聚糖转肽酶。我们评估了 DBO durlobactam 作为 Mtb β-内酰胺酶 BlaC 和多种 Mtb 肽聚糖转肽酶(PonA1、LdtMt1、LdtMt2、LdtMt3 和 LdtMt5)抑制剂的作用。定时电喷雾离子化质谱(ESI-MS)捕获了与 BlaC 和除 LdtMt5 以外的所有转肽酶的酰基酶复合物。抑制动力学表明,杜洛巴坦是一种强效、高效的 BlaC DBO 抑制剂(KI app 9.2 ± 0.9 μM,k2/K 5600 ± 560 M-1 s-1),与克拉维酸(KI app 3.3 ± 0.6 μM,k2/K 8400 ± 840 M-1 s-1)相似;然而,杜洛巴坦的周转次数(tn = kcat/kinact)低于克拉维酸(分别为 1 和 8)。对于肽聚糖转肽酶来说,杜洛巴坦和克拉维酸的 KI 应用值相似,但 ESI-MS 在更多的时间点捕获到了杜洛巴坦复合物。分子对接和模拟显示,杜洛巴坦在 BlaC、PonA1 和 LdtMt2 的活性位点上有几种富有成效的相互作用。用阿莫西林、头孢曲松、美罗培南、亚胺培南、克拉维酸和杜洛巴坦对 11 种芽胞杆菌分离物进行了抗生素药敏试验。杜洛巴坦的最低抑菌浓度(MIC)范围为 0.5-16 μg/mL,与美罗培南(1-32 μg/mL)和亚胺培南(0.5-64 μg/mL)的范围相似。在β-内酰胺+杜鲁巴坦组合(质量/体积比为1:1)中,除了一种使用美罗培南-杜鲁巴坦的分离物外,所有分离物的MIC都降低了4-64倍。这项研究支持进一步探索以 BlaC 和 Mtb 肽多糖转肽酶为靶点的新型 β-内酰胺酶抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Durlobactam, a Diazabicyclooctane β-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis

Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb β-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 μM, k2/K 5600 ± 560 M–1 s–1) and similar to clavulanate (KI app 3.3 ± 0.6 μM, k2/K 8400 ± 840 M–1 s–1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5–16 μg/mL, similar to the ranges for meropenem (1–32 μg/mL) and imipenem (0.5–64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem–durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy. Enhancing the Intrinsic Antiplasmodial Activity and Improving the Stability and Selectivity of a Tunable Peptide Scaffold Derived from Human Platelet Factor 4. Amino Acid-Conjugated Polymer-Silver Bromide Nanocomposites for Eradicating Polymicrobial Biofilms and Treating Burn Wound Infections. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. Acknowledgment of "Star Reviewers" over the Past Decade for ACS Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1