银有机金属是强效硫氧还蛋白和谷胱甘肽还原酶抑制剂:探索溶液化学性质与强抗菌效果的相关性

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2024-04-12 DOI:10.1021/acsinfecdis.4c00104
Igor V. Esarev, Bianka Karge, Haoxuan Zeng, Petra Lippmann, Peter G. Jones, Hedda Schrey, Mark Brönstrup and Ingo Ott*, 
{"title":"银有机金属是强效硫氧还蛋白和谷胱甘肽还原酶抑制剂:探索溶液化学性质与强抗菌效果的相关性","authors":"Igor V. Esarev,&nbsp;Bianka Karge,&nbsp;Haoxuan Zeng,&nbsp;Petra Lippmann,&nbsp;Peter G. Jones,&nbsp;Hedda Schrey,&nbsp;Mark Brönstrup and Ingo Ott*,&nbsp;","doi":"10.1021/acsinfecdis.4c00104","DOIUrl":null,"url":null,"abstract":"<p >The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC<sub>50</sub> values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsinfecdis.4c00104","citationCount":"0","resultStr":"{\"title\":\"Silver Organometallics that are Highly Potent Thioredoxin and Glutathione Reductase Inhibitors: Exploring the Correlations of Solution Chemistry with the Strong Antibacterial Effects\",\"authors\":\"Igor V. Esarev,&nbsp;Bianka Karge,&nbsp;Haoxuan Zeng,&nbsp;Petra Lippmann,&nbsp;Peter G. Jones,&nbsp;Hedda Schrey,&nbsp;Mark Brönstrup and Ingo Ott*,&nbsp;\",\"doi\":\"10.1021/acsinfecdis.4c00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC<sub>50</sub> values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsinfecdis.4c00104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00104\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

银的抗菌活性已得到公认,但其作用机制尚未得到充分探索。此外,低分子银化合物的细胞毒性、稳定性和溶解性等问题也阻碍了它们向药物线索的发展。我们研究了 N-杂环碳化银(NHC)卤代配合物[(NHC)AgX,X = Cl、Br 和 I],将其作为一种很有前景的新型抗菌银有机金属。光谱研究和电导率测定表明,带有碘配体的配合物具有更高的稳定性。这些复合物对致病性革兰氏阴性菌具有广谱、强效的活性。但对革兰氏阳性菌株没有明显的活性。进一步的研究表明,培养基中的胰蛋白胨和酵母提取物是导致缺乏活性的原因。研究证实,所选化合物可减少生物膜的形成,并对谷胱甘肽和硫代氧化还原酶有很强的抑制作用,其 IC50 值在纳摩尔范围内。与其他银复合物不同的是,碘配体化合物除了具有更好的理化特性外,还没有显示出细胞毒性作用。总之,具有碘化二级配体的银 NHC 复合物是无毒银有机金属的一个有用支架,它具有更好的物理化学性质和基于抑制硫代还原酶和谷胱甘肽还原酶的独特作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silver Organometallics that are Highly Potent Thioredoxin and Glutathione Reductase Inhibitors: Exploring the Correlations of Solution Chemistry with the Strong Antibacterial Effects

The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC50 values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Amino Acid-Conjugated Polymer-Silver Bromide Nanocomposites for Eradicating Polymicrobial Biofilms and Treating Burn Wound Infections. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. Hemolysin Coregulated Protein (HCP) from Vibrio Cholerae Interacts with the Host Cell Actin Cytoskeleton. Diclofenac Sodium Restores the Sensitivity of Colistin-Resistant Gram-Negative Bacteria to Colistin. Deciphering the Intracellular Action of the Antimicrobial Peptide A11 via an In-Depth Analysis of Its Effect on the Global Proteome of Acinetobacter baumannii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1