{"title":"开放式领域中的多视角同时物体识别与抓取","authors":"Hamidreza Kasaei, Mohammadreza Kasaei, Georgios Tziafas, Sha Luo, Remo Sasso","doi":"10.1007/s10846-024-02092-5","DOIUrl":null,"url":null,"abstract":"<p>To aid humans in everyday tasks, robots need to know which objects exist in the scene, where they are, and how to grasp and manipulate them in different situations. Therefore, object recognition and grasping are two key functionalities for autonomous robots. Most state-of-the-art approaches treat object recognition and grasping as two separate problems, even though both use visual input. Furthermore, the knowledge of the robot is fixed after the training phase. In such cases, if the robot encounters new object categories, it must be retrained to incorporate new information without catastrophic forgetting. To resolve this problem, we propose a deep learning architecture with an augmented memory capacity to handle open-ended object recognition and grasping simultaneously. In particular, our approach takes multi-views of an object as input and jointly estimates pixel-wise grasp configuration as well as a deep scale- and rotation-invariant representation as output. The obtained representation is then used for open-ended object recognition through a meta-active learning technique. We demonstrate the ability of our approach to grasp never-seen-before objects and to rapidly learn new object categories using very few examples on-site in both simulation and real-world settings. Our approach empowers a robot to acquire knowledge about new object categories using, on average, less than five instances per category and achieve <span>\\(95\\%\\)</span> object recognition accuracy and above <span>\\(91\\%\\)</span> grasp success rate on (highly) cluttered scenarios in both simulation and real-robot experiments. A video of these experiments is available online at: https://youtu.be/n9SMpuEkOgk</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"72 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Multi-View Object Recognition and Grasping in Open-Ended Domains\",\"authors\":\"Hamidreza Kasaei, Mohammadreza Kasaei, Georgios Tziafas, Sha Luo, Remo Sasso\",\"doi\":\"10.1007/s10846-024-02092-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To aid humans in everyday tasks, robots need to know which objects exist in the scene, where they are, and how to grasp and manipulate them in different situations. Therefore, object recognition and grasping are two key functionalities for autonomous robots. Most state-of-the-art approaches treat object recognition and grasping as two separate problems, even though both use visual input. Furthermore, the knowledge of the robot is fixed after the training phase. In such cases, if the robot encounters new object categories, it must be retrained to incorporate new information without catastrophic forgetting. To resolve this problem, we propose a deep learning architecture with an augmented memory capacity to handle open-ended object recognition and grasping simultaneously. In particular, our approach takes multi-views of an object as input and jointly estimates pixel-wise grasp configuration as well as a deep scale- and rotation-invariant representation as output. The obtained representation is then used for open-ended object recognition through a meta-active learning technique. We demonstrate the ability of our approach to grasp never-seen-before objects and to rapidly learn new object categories using very few examples on-site in both simulation and real-world settings. Our approach empowers a robot to acquire knowledge about new object categories using, on average, less than five instances per category and achieve <span>\\\\(95\\\\%\\\\)</span> object recognition accuracy and above <span>\\\\(91\\\\%\\\\)</span> grasp success rate on (highly) cluttered scenarios in both simulation and real-robot experiments. A video of these experiments is available online at: https://youtu.be/n9SMpuEkOgk</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02092-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02092-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Simultaneous Multi-View Object Recognition and Grasping in Open-Ended Domains
To aid humans in everyday tasks, robots need to know which objects exist in the scene, where they are, and how to grasp and manipulate them in different situations. Therefore, object recognition and grasping are two key functionalities for autonomous robots. Most state-of-the-art approaches treat object recognition and grasping as two separate problems, even though both use visual input. Furthermore, the knowledge of the robot is fixed after the training phase. In such cases, if the robot encounters new object categories, it must be retrained to incorporate new information without catastrophic forgetting. To resolve this problem, we propose a deep learning architecture with an augmented memory capacity to handle open-ended object recognition and grasping simultaneously. In particular, our approach takes multi-views of an object as input and jointly estimates pixel-wise grasp configuration as well as a deep scale- and rotation-invariant representation as output. The obtained representation is then used for open-ended object recognition through a meta-active learning technique. We demonstrate the ability of our approach to grasp never-seen-before objects and to rapidly learn new object categories using very few examples on-site in both simulation and real-world settings. Our approach empowers a robot to acquire knowledge about new object categories using, on average, less than five instances per category and achieve \(95\%\) object recognition accuracy and above \(91\%\) grasp success rate on (highly) cluttered scenarios in both simulation and real-robot experiments. A video of these experiments is available online at: https://youtu.be/n9SMpuEkOgk
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).