{"title":"评估和周期多项式关系","authors":"Steven Charlton, Adam Keilthy","doi":"10.1017/fms.2024.16","DOIUrl":null,"url":null,"abstract":"<p>In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and the coradical filtration [9]. In particular, there are additional relations in the depth graded algebra coming from period polynomials of cusp forms for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328145638660-0911:S2050509424000161:S2050509424000161_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {SL}}_2({\\mathbb {Z}})$</span></span></img></span></span>. In contrast, a simple combinatorial filtration, the block filtration [13, 28] is known to agree with the coradical filtration, and so there is no similar defect in the associated graded. However, via an explicit evaluation of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328145638660-0911:S2050509424000161:S2050509424000161_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\zeta (2,\\ldots ,2,4,2,\\ldots ,2)$</span></span></img></span></span> as a polynomial in double zeta values, we derive these period polynomial relations as a consequence of an intrinsic symmetry of block graded multiple zeta values in block degree 2. In deriving this evaluation, we find a Galois descent of certain alternating double zeta values to classical double zeta values, which we then apply to give an evaluation of the multiple <span>t</span> values [22] <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328145638660-0911:S2050509424000161:S2050509424000161_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$t(2\\ell ,2k)$</span></span></img></span></span> in terms of classical double zeta values.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of and period polynomial relations\",\"authors\":\"Steven Charlton, Adam Keilthy\",\"doi\":\"10.1017/fms.2024.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and the coradical filtration [9]. In particular, there are additional relations in the depth graded algebra coming from period polynomials of cusp forms for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328145638660-0911:S2050509424000161:S2050509424000161_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {SL}}_2({\\\\mathbb {Z}})$</span></span></img></span></span>. In contrast, a simple combinatorial filtration, the block filtration [13, 28] is known to agree with the coradical filtration, and so there is no similar defect in the associated graded. However, via an explicit evaluation of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328145638660-0911:S2050509424000161:S2050509424000161_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\zeta (2,\\\\ldots ,2,4,2,\\\\ldots ,2)$</span></span></img></span></span> as a polynomial in double zeta values, we derive these period polynomial relations as a consequence of an intrinsic symmetry of block graded multiple zeta values in block degree 2. In deriving this evaluation, we find a Galois descent of certain alternating double zeta values to classical double zeta values, which we then apply to give an evaluation of the multiple <span>t</span> values [22] <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328145638660-0911:S2050509424000161:S2050509424000161_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t(2\\\\ell ,2k)$</span></span></img></span></span> in terms of classical double zeta values.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.16\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.16","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In studying the depth filtration on multiple zeta values, difficulties quickly arise due to a disparity between it and the coradical filtration [9]. In particular, there are additional relations in the depth graded algebra coming from period polynomials of cusp forms for $\operatorname {\mathrm {SL}}_2({\mathbb {Z}})$. In contrast, a simple combinatorial filtration, the block filtration [13, 28] is known to agree with the coradical filtration, and so there is no similar defect in the associated graded. However, via an explicit evaluation of $\zeta (2,\ldots ,2,4,2,\ldots ,2)$ as a polynomial in double zeta values, we derive these period polynomial relations as a consequence of an intrinsic symmetry of block graded multiple zeta values in block degree 2. In deriving this evaluation, we find a Galois descent of certain alternating double zeta values to classical double zeta values, which we then apply to give an evaluation of the multiple t values [22] $t(2\ell ,2k)$ in terms of classical double zeta values.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.