测定六氟化铀气相水解过程中铀酰气溶胶形成的中间产物和产物

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-04-02 DOI:10.1039/D3RE00665D
Christian Mark Salvador, Jason M. Richards, Shannon M. Mahurin, Meng-Dawn Cheng and Joshua A. Hubbard
{"title":"测定六氟化铀气相水解过程中铀酰气溶胶形成的中间产物和产物","authors":"Christian Mark Salvador, Jason M. Richards, Shannon M. Mahurin, Meng-Dawn Cheng and Joshua A. Hubbard","doi":"10.1039/D3RE00665D","DOIUrl":null,"url":null,"abstract":"<p >The reaction pathway of hydrolysis of UF<small><sub>6</sub></small> to form UO<small><sub>2</sub></small>F<small><sub>2</sub></small> particles is an essential insight in nuclear fuel processing; however, it is still limited to theoretical calculations. Herein, we present the identification of the intermediates and products using various gas precursor concentrations and molecular beam mass spectrometer (MBMS). Compounds containing different uranium atom counts were identified by exposing 300 and 2323 ppm water to 200 ppm UF<small><sub>6</sub></small>. Non-uranium compounds (<em>e.g.</em>, (HF)<small><sub>3</sub></small>(H<small><sub>2</sub></small>O)H, (HF)<small><sub>4</sub></small>H, and (H<small><sub>2</sub></small>O)<small><sub>2</sub></small>(HF)<small><sub>3</sub></small>) dominate the mass spectra in terms of absolute signal intensity. These compounds were dependent on the initial concentration of UF<small><sub>6</sub></small> based on the linear relationship observed between products and gas reactant. Uranium compounds were characterized by UF<small><sub>6</sub></small>, UO<small><sub>3</sub></small>, and UO<small><sub>2</sub></small>F<small><sub>2</sub></small> core molecules, with each species existing predominantly in a certain water concentration. Monomeric compounds (<em>e.g.</em>, UF<small><sub>6</sub></small>(HF)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>7</sub></small>, UO<small><sub>2</sub></small>F<small><sub>2</sub></small>(HF)<small><sub>7</sub></small>H, and UO<small><sub>2</sub></small>F<small><sub>2</sub></small>(HF)<small><sub>5</sub></small>(H<small><sub>2</sub></small>O)<small><sub>3</sub></small>) or species with one uranium atom had high fluorine to uranium ratio (F/U) due to several HF units bonded with the uranium core. Dimeric (<em>e.g.</em> (UO<small><sub>2</sub></small>F<small><sub>2</sub></small>)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O) and (UF<small><sub>6</sub></small>)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)4(HF)<small><sub>3</sub></small>H) and trimeric (<em>e.g.</em>, (UO<small><sub>3</sub></small>)(UO<small><sub>2</sub></small>F<small><sub>2</sub></small>)<small><sub>2</sub></small>(HF)(H<small><sub>2</sub></small>O)<small><sub>3</sub></small> and (UO<small><sub>2</sub></small>F<small><sub>2</sub></small>)<small><sub>2</sub></small>UF<small><sub>6</sub></small>H<small><sub>2</sub></small>F) compounds persisted in high masses with low F/U and H/U ratios. Moreover, ramping of UF<small><sub>6</sub></small> concentration (50–231 ppm) at fixed water content (1.3% Rh or 300 ppm) showed different trends among 949 ions, with some following consistently with molecular identification (<em>e.g.</em>, (UO<small><sub>3</sub></small>)<small><sub>3</sub></small>(HF)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)H). Overall, this study provided important information regarding the formation pathway of UO<small><sub>2</sub></small>F<small><sub>2</sub></small>, which will be essential in chemical modelling studies. The vast information generated from mass spectrometric runs merits cluster evaluation and factorization to yield more information on the U–O–F system.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d3re00665d?page=search","citationCount":"0","resultStr":"{\"title\":\"Determination of intermediates and products of the uranyl aerosol formation in UF6 hydrolysis in the gas phase†\",\"authors\":\"Christian Mark Salvador, Jason M. Richards, Shannon M. Mahurin, Meng-Dawn Cheng and Joshua A. Hubbard\",\"doi\":\"10.1039/D3RE00665D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The reaction pathway of hydrolysis of UF<small><sub>6</sub></small> to form UO<small><sub>2</sub></small>F<small><sub>2</sub></small> particles is an essential insight in nuclear fuel processing; however, it is still limited to theoretical calculations. Herein, we present the identification of the intermediates and products using various gas precursor concentrations and molecular beam mass spectrometer (MBMS). Compounds containing different uranium atom counts were identified by exposing 300 and 2323 ppm water to 200 ppm UF<small><sub>6</sub></small>. Non-uranium compounds (<em>e.g.</em>, (HF)<small><sub>3</sub></small>(H<small><sub>2</sub></small>O)H, (HF)<small><sub>4</sub></small>H, and (H<small><sub>2</sub></small>O)<small><sub>2</sub></small>(HF)<small><sub>3</sub></small>) dominate the mass spectra in terms of absolute signal intensity. These compounds were dependent on the initial concentration of UF<small><sub>6</sub></small> based on the linear relationship observed between products and gas reactant. Uranium compounds were characterized by UF<small><sub>6</sub></small>, UO<small><sub>3</sub></small>, and UO<small><sub>2</sub></small>F<small><sub>2</sub></small> core molecules, with each species existing predominantly in a certain water concentration. Monomeric compounds (<em>e.g.</em>, UF<small><sub>6</sub></small>(HF)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>7</sub></small>, UO<small><sub>2</sub></small>F<small><sub>2</sub></small>(HF)<small><sub>7</sub></small>H, and UO<small><sub>2</sub></small>F<small><sub>2</sub></small>(HF)<small><sub>5</sub></small>(H<small><sub>2</sub></small>O)<small><sub>3</sub></small>) or species with one uranium atom had high fluorine to uranium ratio (F/U) due to several HF units bonded with the uranium core. Dimeric (<em>e.g.</em> (UO<small><sub>2</sub></small>F<small><sub>2</sub></small>)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O) and (UF<small><sub>6</sub></small>)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)4(HF)<small><sub>3</sub></small>H) and trimeric (<em>e.g.</em>, (UO<small><sub>3</sub></small>)(UO<small><sub>2</sub></small>F<small><sub>2</sub></small>)<small><sub>2</sub></small>(HF)(H<small><sub>2</sub></small>O)<small><sub>3</sub></small> and (UO<small><sub>2</sub></small>F<small><sub>2</sub></small>)<small><sub>2</sub></small>UF<small><sub>6</sub></small>H<small><sub>2</sub></small>F) compounds persisted in high masses with low F/U and H/U ratios. Moreover, ramping of UF<small><sub>6</sub></small> concentration (50–231 ppm) at fixed water content (1.3% Rh or 300 ppm) showed different trends among 949 ions, with some following consistently with molecular identification (<em>e.g.</em>, (UO<small><sub>3</sub></small>)<small><sub>3</sub></small>(HF)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)H). Overall, this study provided important information regarding the formation pathway of UO<small><sub>2</sub></small>F<small><sub>2</sub></small>, which will be essential in chemical modelling studies. The vast information generated from mass spectrometric runs merits cluster evaluation and factorization to yield more information on the U–O–F system.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/re/d3re00665d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00665d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00665d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

六氟化铀水解形成 UO2F2 粒子的反应途径是核燃料处理过程中的一个重要环节,但目前仍仅限于理论计算。在此,我们利用不同浓度的气体前驱体和分子束质谱仪(MBMS)对中间产物和生成物进行了鉴定。通过将 300 ppm 和 2323 ppm 的水与 200 ppm 的六氟化铀接触,确定了含有不同铀原子数的化合物。就绝对信号强度而言,非铀化合物(如 (HF)3(H2O)H、(HF)4H 和 (H2O)2(HF)3)在质谱中占主导地位。根据在产物和气体反应物之间观察到的线性关系,这些化合物取决于六氟化铀的初始浓度。铀化合物的特征是以 UF6、UO3 和 UO2F2 为核心分子,每个物种主要存在于一定浓度的水中。单体化合物(如 UF6(HF)2(H2O)7、UO2F2(HF)7H 和 UO2F2(HF)5(H2O)3)或含有一个铀原子的种类,由于多个 HF 单元与铀核心结合,因此氟铀比(F/U)较高。二聚体(如 (UO2F2)2(H2O) 和 (UF6)2(H2O)4(HF)3H)和三聚体(如 (UO3)(UO2F2)2(HF)(H2O)3 和 (UO2F2)2UF6H2F)化合物的质量较高,但 F/U 和 H/U 比值较低。此外,在固定水含量(1.3% Rh 或 300 ppm)条件下,UF6 浓度(50-231 ppm)的递增在 949 个离子中显示出不同的趋势,其中一些离子与分子鉴定结果一致(如 (UO3)3(HF)2(H2O)H)。总之,这项研究提供了有关 UO2F2 形成途径的重要信息,对化学建模研究至关重要。质谱运行产生的大量信息值得进行聚类评估和因式分解,以获得有关 U-O-F 系统的更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of intermediates and products of the uranyl aerosol formation in UF6 hydrolysis in the gas phase†

The reaction pathway of hydrolysis of UF6 to form UO2F2 particles is an essential insight in nuclear fuel processing; however, it is still limited to theoretical calculations. Herein, we present the identification of the intermediates and products using various gas precursor concentrations and molecular beam mass spectrometer (MBMS). Compounds containing different uranium atom counts were identified by exposing 300 and 2323 ppm water to 200 ppm UF6. Non-uranium compounds (e.g., (HF)3(H2O)H, (HF)4H, and (H2O)2(HF)3) dominate the mass spectra in terms of absolute signal intensity. These compounds were dependent on the initial concentration of UF6 based on the linear relationship observed between products and gas reactant. Uranium compounds were characterized by UF6, UO3, and UO2F2 core molecules, with each species existing predominantly in a certain water concentration. Monomeric compounds (e.g., UF6(HF)2(H2O)7, UO2F2(HF)7H, and UO2F2(HF)5(H2O)3) or species with one uranium atom had high fluorine to uranium ratio (F/U) due to several HF units bonded with the uranium core. Dimeric (e.g. (UO2F2)2(H2O) and (UF6)2(H2O)4(HF)3H) and trimeric (e.g., (UO3)(UO2F2)2(HF)(H2O)3 and (UO2F2)2UF6H2F) compounds persisted in high masses with low F/U and H/U ratios. Moreover, ramping of UF6 concentration (50–231 ppm) at fixed water content (1.3% Rh or 300 ppm) showed different trends among 949 ions, with some following consistently with molecular identification (e.g., (UO3)3(HF)2(H2O)H). Overall, this study provided important information regarding the formation pathway of UO2F2, which will be essential in chemical modelling studies. The vast information generated from mass spectrometric runs merits cluster evaluation and factorization to yield more information on the U–O–F system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Enzyme-catalyzed polyurethane adhesive degradation Synthetic and mechanistic studies of the multicomponent reaction of 2‑(phenylethynyl)benzaldehyde, primary amine and diphenylphosphine oxide† A simplified chemical kinetic model with a reaction mechanism based on a multidimensional average error iteration method for ammonia and ammonia/hydrogen combustion Carbonylations in flow: tube-in-tube reactor vs gas-liquid slug flow Boosting the kinetics of PET glycolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1