George Kritikakis, Nikos Papadopoulos, Nikos Andronikidis, Kleanthis Simyrdanis, Theotokis Theodoulou
{"title":"评估多通道表面波分析方法在绘制超浅水域环境中的古代结构图方面的有效性:希腊 Agioi Theodoroi 案例","authors":"George Kritikakis, Nikos Papadopoulos, Nikos Andronikidis, Kleanthis Simyrdanis, Theotokis Theodoulou","doi":"10.1002/arp.1938","DOIUrl":null,"url":null,"abstract":"The present geophysical research aims to evaluate the applicability of multichannel analysis of surface waves (MASW) on mapping ultrashallow underwater ancient masonry remnants. The work presents the analysis from a single seismic line using MASW and seismic refraction tomography (SRT) methods and its corresponding electrical resistivity tomography (ERT) section surveyed at the submerged prehistoric site of Agioi Theodoroi area located 10 km eastern of Heraklion, Crete, Greece. The 2D MASW velocity model exhibits significant correspondence with the resistivity structure extracted from the ERT data, showing lateral S‐wave velocity (Vs) variations at the positions where the high resistivity anomalies exist. The analysis of synthetic seismic data calculated from a respective model reproduced a comparable S‐wave velocity pseudo‐section with the real data. However, the investigated targets (submerged buried masonry) appear shallower and wider in MASW sections than in the real world and the corresponding synthetic models, due to insufficient vertical and horizontal resolution of this method. Surface waves travelling through the seafloor sediments (Scholte‐waves) demonstrate very low velocity values. This makes them suitable for the detection of shallow and relatively large (> 0.5 m) underwater manmade structures, providing the enhancement of MASW method resolution, by utilizing a high frequency (> 100 Hz) seismic source, recording short Scholte wavelengths (≤ 1 m) and using shorter (≤ 0.5 m) receiver spacing and array length. Consequently, the results of this work demonstrate the potential in employing conventional seismic techniques in the delineation of underwater antiquities and the revealing of the cultural dynamics in very shallow off‐shore archaeological sites.","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assess the Effectiveness of Multichannel Analysis of Surface Waves Method in Mapping Ancient Structures in Ultrashallow Aquatic Environments: The Case of Agioi Theodoroi, Greece\",\"authors\":\"George Kritikakis, Nikos Papadopoulos, Nikos Andronikidis, Kleanthis Simyrdanis, Theotokis Theodoulou\",\"doi\":\"10.1002/arp.1938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present geophysical research aims to evaluate the applicability of multichannel analysis of surface waves (MASW) on mapping ultrashallow underwater ancient masonry remnants. The work presents the analysis from a single seismic line using MASW and seismic refraction tomography (SRT) methods and its corresponding electrical resistivity tomography (ERT) section surveyed at the submerged prehistoric site of Agioi Theodoroi area located 10 km eastern of Heraklion, Crete, Greece. The 2D MASW velocity model exhibits significant correspondence with the resistivity structure extracted from the ERT data, showing lateral S‐wave velocity (Vs) variations at the positions where the high resistivity anomalies exist. The analysis of synthetic seismic data calculated from a respective model reproduced a comparable S‐wave velocity pseudo‐section with the real data. However, the investigated targets (submerged buried masonry) appear shallower and wider in MASW sections than in the real world and the corresponding synthetic models, due to insufficient vertical and horizontal resolution of this method. Surface waves travelling through the seafloor sediments (Scholte‐waves) demonstrate very low velocity values. This makes them suitable for the detection of shallow and relatively large (> 0.5 m) underwater manmade structures, providing the enhancement of MASW method resolution, by utilizing a high frequency (> 100 Hz) seismic source, recording short Scholte wavelengths (≤ 1 m) and using shorter (≤ 0.5 m) receiver spacing and array length. Consequently, the results of this work demonstrate the potential in employing conventional seismic techniques in the delineation of underwater antiquities and the revealing of the cultural dynamics in very shallow off‐shore archaeological sites.\",\"PeriodicalId\":55490,\"journal\":{\"name\":\"Archaeological Prospection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaeological Prospection\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/arp.1938\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/arp.1938","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
Assess the Effectiveness of Multichannel Analysis of Surface Waves Method in Mapping Ancient Structures in Ultrashallow Aquatic Environments: The Case of Agioi Theodoroi, Greece
The present geophysical research aims to evaluate the applicability of multichannel analysis of surface waves (MASW) on mapping ultrashallow underwater ancient masonry remnants. The work presents the analysis from a single seismic line using MASW and seismic refraction tomography (SRT) methods and its corresponding electrical resistivity tomography (ERT) section surveyed at the submerged prehistoric site of Agioi Theodoroi area located 10 km eastern of Heraklion, Crete, Greece. The 2D MASW velocity model exhibits significant correspondence with the resistivity structure extracted from the ERT data, showing lateral S‐wave velocity (Vs) variations at the positions where the high resistivity anomalies exist. The analysis of synthetic seismic data calculated from a respective model reproduced a comparable S‐wave velocity pseudo‐section with the real data. However, the investigated targets (submerged buried masonry) appear shallower and wider in MASW sections than in the real world and the corresponding synthetic models, due to insufficient vertical and horizontal resolution of this method. Surface waves travelling through the seafloor sediments (Scholte‐waves) demonstrate very low velocity values. This makes them suitable for the detection of shallow and relatively large (> 0.5 m) underwater manmade structures, providing the enhancement of MASW method resolution, by utilizing a high frequency (> 100 Hz) seismic source, recording short Scholte wavelengths (≤ 1 m) and using shorter (≤ 0.5 m) receiver spacing and array length. Consequently, the results of this work demonstrate the potential in employing conventional seismic techniques in the delineation of underwater antiquities and the revealing of the cultural dynamics in very shallow off‐shore archaeological sites.
期刊介绍:
The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology.
The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed.
Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps.
Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged.
The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies.
The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation.
All papers will be subjected to peer review.