{"title":"考古学中的激光雷达应用:系统回顾","authors":"Giacomo Vinci, Federica Vanzani, Alessandro Fontana, Stefano Campana","doi":"10.1002/arp.1931","DOIUrl":null,"url":null,"abstract":"In the last two decades, the analysis of data derived from LiDAR (light detection and ranging) technology has dramatically changed the investigation and documentation of past cultural landscapes, sometimes revealing monumental architectures and settlement systems totally unknown before. Despite the exponential uptick of case studies, an extensive review of LiDAR applications in archaeology is so far missing. Here, we present a systematic survey of works published in international journals in 2001–2022, with the aim of providing an annotated bibliography on the theme and collect quantitative information about each case study. Data collected allowed to analyse the geographic distribution of LiDAR‐based studies, the specifics of acquisitions, the topography and vegetation cover of each study area, the characteristics of the material culture detected, major goals and integrated techniques. The survey considers 291 studies, of which 167 located in Europe, 104 in the Americas and only 20 between Asia, Middle East, Oceania and Africa. Our analysis shows that the impact of LiDAR in archaeological studies was greater in some areas of Europe and North America, where scholars could rely on the availability of open data provided by the institutions. This is testified by the higher number of both case studies and large‐scale projects investigating these regions. It also emerges that LiDAR potential largely depends on the characteristics of the material culture, the vegetation cover and data resolution. These factors underlie the outstanding results achieved through LiDAR in tropical rainforests compared to those obtained in temperate areas, such as the Mediterranean, where the outcropping archaeological evidence, albeit vast and widespread, is generally less preserved and obscured by the dense vegetation of the Mediterranean maquis. We conclude that the increasing availability of LiDAR data over vast areas could lead to enormous advances in the investigation, monitoring and protection of the cultural heritage.","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":"20 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiDAR Applications in Archaeology: A Systematic Review\",\"authors\":\"Giacomo Vinci, Federica Vanzani, Alessandro Fontana, Stefano Campana\",\"doi\":\"10.1002/arp.1931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last two decades, the analysis of data derived from LiDAR (light detection and ranging) technology has dramatically changed the investigation and documentation of past cultural landscapes, sometimes revealing monumental architectures and settlement systems totally unknown before. Despite the exponential uptick of case studies, an extensive review of LiDAR applications in archaeology is so far missing. Here, we present a systematic survey of works published in international journals in 2001–2022, with the aim of providing an annotated bibliography on the theme and collect quantitative information about each case study. Data collected allowed to analyse the geographic distribution of LiDAR‐based studies, the specifics of acquisitions, the topography and vegetation cover of each study area, the characteristics of the material culture detected, major goals and integrated techniques. The survey considers 291 studies, of which 167 located in Europe, 104 in the Americas and only 20 between Asia, Middle East, Oceania and Africa. Our analysis shows that the impact of LiDAR in archaeological studies was greater in some areas of Europe and North America, where scholars could rely on the availability of open data provided by the institutions. This is testified by the higher number of both case studies and large‐scale projects investigating these regions. It also emerges that LiDAR potential largely depends on the characteristics of the material culture, the vegetation cover and data resolution. These factors underlie the outstanding results achieved through LiDAR in tropical rainforests compared to those obtained in temperate areas, such as the Mediterranean, where the outcropping archaeological evidence, albeit vast and widespread, is generally less preserved and obscured by the dense vegetation of the Mediterranean maquis. We conclude that the increasing availability of LiDAR data over vast areas could lead to enormous advances in the investigation, monitoring and protection of the cultural heritage.\",\"PeriodicalId\":55490,\"journal\":{\"name\":\"Archaeological Prospection\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaeological Prospection\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/arp.1931\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/arp.1931","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
LiDAR Applications in Archaeology: A Systematic Review
In the last two decades, the analysis of data derived from LiDAR (light detection and ranging) technology has dramatically changed the investigation and documentation of past cultural landscapes, sometimes revealing monumental architectures and settlement systems totally unknown before. Despite the exponential uptick of case studies, an extensive review of LiDAR applications in archaeology is so far missing. Here, we present a systematic survey of works published in international journals in 2001–2022, with the aim of providing an annotated bibliography on the theme and collect quantitative information about each case study. Data collected allowed to analyse the geographic distribution of LiDAR‐based studies, the specifics of acquisitions, the topography and vegetation cover of each study area, the characteristics of the material culture detected, major goals and integrated techniques. The survey considers 291 studies, of which 167 located in Europe, 104 in the Americas and only 20 between Asia, Middle East, Oceania and Africa. Our analysis shows that the impact of LiDAR in archaeological studies was greater in some areas of Europe and North America, where scholars could rely on the availability of open data provided by the institutions. This is testified by the higher number of both case studies and large‐scale projects investigating these regions. It also emerges that LiDAR potential largely depends on the characteristics of the material culture, the vegetation cover and data resolution. These factors underlie the outstanding results achieved through LiDAR in tropical rainforests compared to those obtained in temperate areas, such as the Mediterranean, where the outcropping archaeological evidence, albeit vast and widespread, is generally less preserved and obscured by the dense vegetation of the Mediterranean maquis. We conclude that the increasing availability of LiDAR data over vast areas could lead to enormous advances in the investigation, monitoring and protection of the cultural heritage.
期刊介绍:
The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology.
The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed.
Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps.
Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged.
The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies.
The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation.
All papers will be subjected to peer review.