用于 3D 打印的淀粉/木粉/甘油/香茅精油复合水降解材料

Starch Pub Date : 2024-04-05 DOI:10.1002/star.202300108
Mieow Kee Chan, Chan Chin Wang, Yi Shen Tee, Mei Hui Tan, Shamini Janasekaran, Izhar Abd Aziz, Shahrul Irwan Musa, Muhammad Ridzuan Mohammed Khir
{"title":"用于 3D 打印的淀粉/木粉/甘油/香茅精油复合水降解材料","authors":"Mieow Kee Chan, Chan Chin Wang, Yi Shen Tee, Mei Hui Tan, Shamini Janasekaran, Izhar Abd Aziz, Shahrul Irwan Musa, Muhammad Ridzuan Mohammed Khir","doi":"10.1002/star.202300108","DOIUrl":null,"url":null,"abstract":"The dependency of 3D printing on thermoplastics releases volatile organic compounds and contributes to global microplastic pollution. The objective of this study is to explore the potential of hydro‐degradable starch‐based composite as a 3D printing material by considering its printability, hydro‐degradability, and strength. Starch is hydro degradable, however, it exhibits low strength thus attempts are made to improve the strength of the composite by starch coating and using lemongrass essential oil (LEO) as an additive. The result shows that 0.2 wt% of LEO increased the strength of starch/wood powder/glycerol/LEO (SWGL) composite by 55% and reduced the contact angle by ≈27° compared to the control. Starch coating increases the strength of the composite by filling up the voids in the structure and producing an integrated homogeneous surface. The SWGL composites exhibit good hydro degradability, especially under acidic conditions, due to the high‐water sorption rate and solubility. The printability of SWGL composites is good where the objects are printed as designed with the aid of a heating chamber. In conclusion, SWGL with 0.5wt% LEO is suitable for real‐life application as the 3D printing material for photo frames and souvenirs due to its good hydro degradability and moderate tensile strength.","PeriodicalId":501569,"journal":{"name":"Starch","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Starch/Wood Powder/Glycerol/Lemongrass Essential Oil Composite as Hydro‐Degradable Materials for 3D Printing\",\"authors\":\"Mieow Kee Chan, Chan Chin Wang, Yi Shen Tee, Mei Hui Tan, Shamini Janasekaran, Izhar Abd Aziz, Shahrul Irwan Musa, Muhammad Ridzuan Mohammed Khir\",\"doi\":\"10.1002/star.202300108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dependency of 3D printing on thermoplastics releases volatile organic compounds and contributes to global microplastic pollution. The objective of this study is to explore the potential of hydro‐degradable starch‐based composite as a 3D printing material by considering its printability, hydro‐degradability, and strength. Starch is hydro degradable, however, it exhibits low strength thus attempts are made to improve the strength of the composite by starch coating and using lemongrass essential oil (LEO) as an additive. The result shows that 0.2 wt% of LEO increased the strength of starch/wood powder/glycerol/LEO (SWGL) composite by 55% and reduced the contact angle by ≈27° compared to the control. Starch coating increases the strength of the composite by filling up the voids in the structure and producing an integrated homogeneous surface. The SWGL composites exhibit good hydro degradability, especially under acidic conditions, due to the high‐water sorption rate and solubility. The printability of SWGL composites is good where the objects are printed as designed with the aid of a heating chamber. In conclusion, SWGL with 0.5wt% LEO is suitable for real‐life application as the 3D printing material for photo frames and souvenirs due to its good hydro degradability and moderate tensile strength.\",\"PeriodicalId\":501569,\"journal\":{\"name\":\"Starch\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Starch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/star.202300108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Starch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/star.202300108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维打印对热塑性塑料的依赖会释放出挥发性有机化合物,造成全球微塑料污染。本研究旨在通过考虑淀粉基复合材料的可打印性、水降解性和强度,探索其作为三维打印材料的潜力。淀粉可水解降解,但强度较低,因此尝试通过淀粉涂层和使用柠檬草精油(LEO)作为添加剂来提高复合材料的强度。结果表明,与对照组相比,0.2 wt%的柠檬草精油可使淀粉/木粉/甘油/柠檬草精油(SWGL)复合材料的强度提高 55%,接触角减小 ≈27°。淀粉涂层可填充结构中的空隙并产生一个整体均匀的表面,从而提高复合材料的强度。由于高吸水率和高溶解性,SWGL 复合材料具有良好的水降解性,尤其是在酸性条件下。SWGL 复合材料的可印刷性很好,在加热室的帮助下,物体可以按照设计进行印刷。总之,含 0.5wt% LEO 的 SWGL 具有良好的水降解性和适中的拉伸强度,适合在现实生活中用作相框和纪念品的 3D 打印材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Starch/Wood Powder/Glycerol/Lemongrass Essential Oil Composite as Hydro‐Degradable Materials for 3D Printing
The dependency of 3D printing on thermoplastics releases volatile organic compounds and contributes to global microplastic pollution. The objective of this study is to explore the potential of hydro‐degradable starch‐based composite as a 3D printing material by considering its printability, hydro‐degradability, and strength. Starch is hydro degradable, however, it exhibits low strength thus attempts are made to improve the strength of the composite by starch coating and using lemongrass essential oil (LEO) as an additive. The result shows that 0.2 wt% of LEO increased the strength of starch/wood powder/glycerol/LEO (SWGL) composite by 55% and reduced the contact angle by ≈27° compared to the control. Starch coating increases the strength of the composite by filling up the voids in the structure and producing an integrated homogeneous surface. The SWGL composites exhibit good hydro degradability, especially under acidic conditions, due to the high‐water sorption rate and solubility. The printability of SWGL composites is good where the objects are printed as designed with the aid of a heating chamber. In conclusion, SWGL with 0.5wt% LEO is suitable for real‐life application as the 3D printing material for photo frames and souvenirs due to its good hydro degradability and moderate tensile strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Different Dehulling Methods on Physical and Chemical Properties of Tartary Buckwheat Flour Research Progress on Structure and Bioactivity of Polysaccharides from Platycodon grandiflorum Contents: Starch ‐ Stärke 9–10/2024 Issue Information: Starch ‐ Stärke 9–10/2024 Effect of Organic Acids as Additives on Buckwheat Starch Films Produced by Casting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1