{"title":"通用脑启发计算系统研究","authors":"Peng Qu, Xing-Long Ji, Jia-Jie Chen, Meng Pang, Yu-Chen Li, Xiao-Yi Liu, You-Hui Zhang","doi":"10.1007/s11390-023-4002-3","DOIUrl":null,"url":null,"abstract":"<p>Brain-inspired computing is a new technology that draws on the principles of brain science and is oriented to the efficient development of artificial general intelligence (AGI), and a brain-inspired computing system is a hierarchical system composed of neuromorphic chips, basic software and hardware, and algorithms/applications that embody this technology. While the system is developing rapidly, it faces various challenges and opportunities brought by interdisciplinary research, including the issue of software and hardware fragmentation. This paper analyzes the status quo of brain-inspired computing systems. Enlightened by some design principle and methodology of general-purpose computers, it is proposed to construct “general-purpose” brain-inspired computing systems. A general-purpose brain-inspired computing system refers to a brain-inspired computing hierarchy constructed based on the design philosophy of decoupling software and hardware, which can flexibly support various brain-inspired computing applications and neuromorphic chips with different architectures. Further, this paper introduces our recent work in these aspects, including the ANN (artificial neural network)/SNN (spiking neural network) development tools, the hardware agnostic compilation infrastructure, and the chip micro-architecture with high flexibility of programming and high performance; these studies show that the “general-purpose” system can remarkably improve the efficiency of application development and enhance the productivity of basic software, thereby being conductive to accelerating the advancement of various brain-inspired algorithms and applications. We believe that this is the key to the collaborative research and development, and the evolution of applications, basic software and chips in this field, and conducive to building a favorable software/hardware ecosystem of brain-inspired computing.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on General-Purpose Brain-Inspired Computing Systems\",\"authors\":\"Peng Qu, Xing-Long Ji, Jia-Jie Chen, Meng Pang, Yu-Chen Li, Xiao-Yi Liu, You-Hui Zhang\",\"doi\":\"10.1007/s11390-023-4002-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain-inspired computing is a new technology that draws on the principles of brain science and is oriented to the efficient development of artificial general intelligence (AGI), and a brain-inspired computing system is a hierarchical system composed of neuromorphic chips, basic software and hardware, and algorithms/applications that embody this technology. While the system is developing rapidly, it faces various challenges and opportunities brought by interdisciplinary research, including the issue of software and hardware fragmentation. This paper analyzes the status quo of brain-inspired computing systems. Enlightened by some design principle and methodology of general-purpose computers, it is proposed to construct “general-purpose” brain-inspired computing systems. A general-purpose brain-inspired computing system refers to a brain-inspired computing hierarchy constructed based on the design philosophy of decoupling software and hardware, which can flexibly support various brain-inspired computing applications and neuromorphic chips with different architectures. Further, this paper introduces our recent work in these aspects, including the ANN (artificial neural network)/SNN (spiking neural network) development tools, the hardware agnostic compilation infrastructure, and the chip micro-architecture with high flexibility of programming and high performance; these studies show that the “general-purpose” system can remarkably improve the efficiency of application development and enhance the productivity of basic software, thereby being conductive to accelerating the advancement of various brain-inspired algorithms and applications. We believe that this is the key to the collaborative research and development, and the evolution of applications, basic software and chips in this field, and conducive to building a favorable software/hardware ecosystem of brain-inspired computing.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-023-4002-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-4002-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Research on General-Purpose Brain-Inspired Computing Systems
Brain-inspired computing is a new technology that draws on the principles of brain science and is oriented to the efficient development of artificial general intelligence (AGI), and a brain-inspired computing system is a hierarchical system composed of neuromorphic chips, basic software and hardware, and algorithms/applications that embody this technology. While the system is developing rapidly, it faces various challenges and opportunities brought by interdisciplinary research, including the issue of software and hardware fragmentation. This paper analyzes the status quo of brain-inspired computing systems. Enlightened by some design principle and methodology of general-purpose computers, it is proposed to construct “general-purpose” brain-inspired computing systems. A general-purpose brain-inspired computing system refers to a brain-inspired computing hierarchy constructed based on the design philosophy of decoupling software and hardware, which can flexibly support various brain-inspired computing applications and neuromorphic chips with different architectures. Further, this paper introduces our recent work in these aspects, including the ANN (artificial neural network)/SNN (spiking neural network) development tools, the hardware agnostic compilation infrastructure, and the chip micro-architecture with high flexibility of programming and high performance; these studies show that the “general-purpose” system can remarkably improve the efficiency of application development and enhance the productivity of basic software, thereby being conductive to accelerating the advancement of various brain-inspired algorithms and applications. We believe that this is the key to the collaborative research and development, and the evolution of applications, basic software and chips in this field, and conducive to building a favorable software/hardware ecosystem of brain-inspired computing.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas