自适应半无权传输的安全可靠性分析

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Systems Journal Pub Date : 2024-04-15 DOI:10.1109/JSYST.2024.3378699
Long Ma;Yuan Zhang
{"title":"自适应半无权传输的安全可靠性分析","authors":"Long Ma;Yuan Zhang","doi":"10.1109/JSYST.2024.3378699","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) devices frequently encounter various challenges, including limited power, spectrum, and memory resources, as well as harsh environments conditions. Therefore, the development of an efficient transmission scheme is crucial for ensuring reliable and secure communication in IoT networks. In this article, an adaptive semi-grant-free (SGF) transmission scheme is proposed for reliable uplink nonorthogonal multiple access systems with enhanced security, in which a ratio-based user scheduling criterion and a hybrid successive interference cancellation technique are employed to suppress the activity of untrusted nodes while ensuring reliable transmission. To evaluate the superiority of the adaptive scheme, a conventional static transmission scheme and a worst-case eavesdropping scenario are used as benchmarks. Simulation results show that the adaptive scheme outperforms the conventional schemes in terms of outage and intercept probability. In addition, the closed-form results of grant-based user's and grant-free user's outage probability and untrusted node's intercept probability are derived. Compared to existing literature, this work provides a comprehensive view of security-reliability tradeoff analysis of SGF transmissions.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1080-1091"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security-Reliability Analysis for Adaptive Semi-Grant-Free Transmissions\",\"authors\":\"Long Ma;Yuan Zhang\",\"doi\":\"10.1109/JSYST.2024.3378699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) devices frequently encounter various challenges, including limited power, spectrum, and memory resources, as well as harsh environments conditions. Therefore, the development of an efficient transmission scheme is crucial for ensuring reliable and secure communication in IoT networks. In this article, an adaptive semi-grant-free (SGF) transmission scheme is proposed for reliable uplink nonorthogonal multiple access systems with enhanced security, in which a ratio-based user scheduling criterion and a hybrid successive interference cancellation technique are employed to suppress the activity of untrusted nodes while ensuring reliable transmission. To evaluate the superiority of the adaptive scheme, a conventional static transmission scheme and a worst-case eavesdropping scenario are used as benchmarks. Simulation results show that the adaptive scheme outperforms the conventional schemes in terms of outage and intercept probability. In addition, the closed-form results of grant-based user's and grant-free user's outage probability and untrusted node's intercept probability are derived. Compared to existing literature, this work provides a comprehensive view of security-reliability tradeoff analysis of SGF transmissions.\",\"PeriodicalId\":55017,\"journal\":{\"name\":\"IEEE Systems Journal\",\"volume\":\"18 2\",\"pages\":\"1080-1091\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10499802/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10499802/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)设备经常会遇到各种挑战,包括有限的功率、频谱和内存资源,以及恶劣的环境条件。因此,开发高效的传输方案对于确保物联网网络通信的可靠性和安全性至关重要。本文为具有增强安全性的可靠上行非正交多址系统提出了一种自适应半无补助(SGF)传输方案,其中采用了基于比率的用户调度准则和混合连续干扰消除技术,以抑制不信任节点的活动,同时确保可靠传输。为了评估自适应方案的优越性,使用了传统的静态传输方案和最坏情况下的窃听方案作为基准。仿真结果表明,自适应方案在中断和截获概率方面优于传统方案。此外,还推导出了基于授予的用户和无授予用户的中断概率以及不信任节点的截获概率的闭式结果。与现有文献相比,这项研究为 SGF 传输的安全性-可靠性权衡分析提供了一个全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Security-Reliability Analysis for Adaptive Semi-Grant-Free Transmissions
Internet of Things (IoT) devices frequently encounter various challenges, including limited power, spectrum, and memory resources, as well as harsh environments conditions. Therefore, the development of an efficient transmission scheme is crucial for ensuring reliable and secure communication in IoT networks. In this article, an adaptive semi-grant-free (SGF) transmission scheme is proposed for reliable uplink nonorthogonal multiple access systems with enhanced security, in which a ratio-based user scheduling criterion and a hybrid successive interference cancellation technique are employed to suppress the activity of untrusted nodes while ensuring reliable transmission. To evaluate the superiority of the adaptive scheme, a conventional static transmission scheme and a worst-case eavesdropping scenario are used as benchmarks. Simulation results show that the adaptive scheme outperforms the conventional schemes in terms of outage and intercept probability. In addition, the closed-form results of grant-based user's and grant-free user's outage probability and untrusted node's intercept probability are derived. Compared to existing literature, this work provides a comprehensive view of security-reliability tradeoff analysis of SGF transmissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Journal
IEEE Systems Journal 工程技术-电信学
CiteScore
9.80
自引率
6.80%
发文量
572
审稿时长
4.9 months
期刊介绍: This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.
期刊最新文献
Relationship between emotional state and masticatory system function in a group of healthy volunteers aged 18-21. Table of Contents Front Cover Editorial IEEE Systems Council Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1