提出一种准确、快速的微型/超微型 LED 光学批量检测方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-09 DOI:10.1109/JEDS.2024.3386528
Zhen Li;Mei-Cong Huang;Xiong-Jun Cao;Da Xu;Yi Lin;Zhong Chen;Zi-Quan Guo
{"title":"提出一种准确、快速的微型/超微型 LED 光学批量检测方法","authors":"Zhen Li;Mei-Cong Huang;Xiong-Jun Cao;Da Xu;Yi Lin;Zhong Chen;Zi-Quan Guo","doi":"10.1109/JEDS.2024.3386528","DOIUrl":null,"url":null,"abstract":"Based on the microscopic hyperspectral imaging technique, an optical batch inspection method has been proposed by the authors to efficiently and precisely obtain the absolute emission spectra of red (R), green (G), and blue (B) Mini-/Micro-light-emitting diodes (Mini-/Micro-LEDs). The RGB Mini-LEDs (with a chip area of \n<inline-formula> <tex-math>$200\\,\\,\\mu \\text{m}\\,\\,\\times 100\\,\\,\\mu \\text{m}$ </tex-math></inline-formula>\n) based array is selected for carrying out this experiment. Via the proposed method, the photometric and colorimetric properties of each Mini-LED pixel could be derived in detail. In this proposed method, an optimized Canny-based algorithm has been used for quickly detecting the effectively emitting area in the collected hyperspectral images, thus saving more time for workers. While compared with the traditional integrating-sphere-based method, the measured data between the proposed method and traditional method are in fairly good consistence, with their maximum deviation of < 3.2%. The external quantum efficiency (EQE) and chromaticity coordinates of each Mini-LED are acquired at the temperature ranging from 300 K to 340 K by the proposed method. Three RGB Micro-LEDs (with a chip area of \n<inline-formula> <tex-math>$10\\,\\,\\mu \\text{m}\\,\\,\\times 10\\,\\,\\mu \\text{m}$ </tex-math></inline-formula>\n) based arrays are also selected for the optical batch detection, and the pseudocolor maps of normalized electroluminescence (EL) intensity for RGB Micro-LEDs are analyzed. Finally, the optical crosstalk of RGB Mini-LEDs is quantitatively defined and analyzed. The optical crosstalk effects are more prominent for red Mini-LEDs than the other two. Results indicate that the proposed method has shown potential applications in the field of Mini-/Micro-LEDs’ batch inspection.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10495305","citationCount":"0","resultStr":"{\"title\":\"Proposing an Accurate and Fast Optical Batch Inspection Method of Mini-/Micro-LEDs\",\"authors\":\"Zhen Li;Mei-Cong Huang;Xiong-Jun Cao;Da Xu;Yi Lin;Zhong Chen;Zi-Quan Guo\",\"doi\":\"10.1109/JEDS.2024.3386528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the microscopic hyperspectral imaging technique, an optical batch inspection method has been proposed by the authors to efficiently and precisely obtain the absolute emission spectra of red (R), green (G), and blue (B) Mini-/Micro-light-emitting diodes (Mini-/Micro-LEDs). The RGB Mini-LEDs (with a chip area of \\n<inline-formula> <tex-math>$200\\\\,\\\\,\\\\mu \\\\text{m}\\\\,\\\\,\\\\times 100\\\\,\\\\,\\\\mu \\\\text{m}$ </tex-math></inline-formula>\\n) based array is selected for carrying out this experiment. Via the proposed method, the photometric and colorimetric properties of each Mini-LED pixel could be derived in detail. In this proposed method, an optimized Canny-based algorithm has been used for quickly detecting the effectively emitting area in the collected hyperspectral images, thus saving more time for workers. While compared with the traditional integrating-sphere-based method, the measured data between the proposed method and traditional method are in fairly good consistence, with their maximum deviation of < 3.2%. The external quantum efficiency (EQE) and chromaticity coordinates of each Mini-LED are acquired at the temperature ranging from 300 K to 340 K by the proposed method. Three RGB Micro-LEDs (with a chip area of \\n<inline-formula> <tex-math>$10\\\\,\\\\,\\\\mu \\\\text{m}\\\\,\\\\,\\\\times 10\\\\,\\\\,\\\\mu \\\\text{m}$ </tex-math></inline-formula>\\n) based arrays are also selected for the optical batch detection, and the pseudocolor maps of normalized electroluminescence (EL) intensity for RGB Micro-LEDs are analyzed. Finally, the optical crosstalk of RGB Mini-LEDs is quantitatively defined and analyzed. The optical crosstalk effects are more prominent for red Mini-LEDs than the other two. Results indicate that the proposed method has shown potential applications in the field of Mini-/Micro-LEDs’ batch inspection.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10495305\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10495305/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10495305/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

基于显微高光谱成像技术,作者提出了一种光学批量检测方法,以高效、精确地获取红色(R)、绿色(G)和蓝色(B)迷你/微型发光二极管(Mini/Micro-LEDs)的绝对发射光谱。本实验选择了基于 RGB Mini-LED 的阵列(芯片面积为 200 英寸/100 次)。通过所提出的方法,可以详细得出每个 Mini-LED 像素的光度和色度特性。在该方法中,使用了基于 Canny 的优化算法,可在采集的高光谱图像中快速检测有效发光区域,从而为工作人员节省更多时间。与传统的基于积分球的方法相比,拟议方法和传统方法的测量数据相当一致,其最大偏差小于 3.2%。在 300 K 至 340 K 的温度范围内,利用拟议方法获得了每种 Mini-LED 的外部量子效率(EQE)和色度坐标。同时还选择了三个基于RGB Micro-LED(芯片面积为10text{m}/times 10text{m}$)的阵列进行光批量检测,并分析了RGB Micro-LED归一化电致发光(EL)强度的伪彩色图。最后,对 RGB Mini-LED 的光学串扰进行了定量定义和分析。与其他两种微型 LED 相比,红色微型 LED 的光学串扰效应更为突出。结果表明,所提出的方法在 Mini-Micro LED 的批量检测领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposing an Accurate and Fast Optical Batch Inspection Method of Mini-/Micro-LEDs
Based on the microscopic hyperspectral imaging technique, an optical batch inspection method has been proposed by the authors to efficiently and precisely obtain the absolute emission spectra of red (R), green (G), and blue (B) Mini-/Micro-light-emitting diodes (Mini-/Micro-LEDs). The RGB Mini-LEDs (with a chip area of $200\,\,\mu \text{m}\,\,\times 100\,\,\mu \text{m}$ ) based array is selected for carrying out this experiment. Via the proposed method, the photometric and colorimetric properties of each Mini-LED pixel could be derived in detail. In this proposed method, an optimized Canny-based algorithm has been used for quickly detecting the effectively emitting area in the collected hyperspectral images, thus saving more time for workers. While compared with the traditional integrating-sphere-based method, the measured data between the proposed method and traditional method are in fairly good consistence, with their maximum deviation of < 3.2%. The external quantum efficiency (EQE) and chromaticity coordinates of each Mini-LED are acquired at the temperature ranging from 300 K to 340 K by the proposed method. Three RGB Micro-LEDs (with a chip area of $10\,\,\mu \text{m}\,\,\times 10\,\,\mu \text{m}$ ) based arrays are also selected for the optical batch detection, and the pseudocolor maps of normalized electroluminescence (EL) intensity for RGB Micro-LEDs are analyzed. Finally, the optical crosstalk of RGB Mini-LEDs is quantitatively defined and analyzed. The optical crosstalk effects are more prominent for red Mini-LEDs than the other two. Results indicate that the proposed method has shown potential applications in the field of Mini-/Micro-LEDs’ batch inspection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1