利用多层多模态潜在德里希勒分配整合视觉、生理和文字信息的情绪概念形成研究

Kazuki Tsurumaki, Chie Hieida, Kazuki Miyazawa
{"title":"利用多层多模态潜在德里希勒分配整合视觉、生理和文字信息的情绪概念形成研究","authors":"Kazuki Tsurumaki, Chie Hieida, Kazuki Miyazawa","doi":"arxiv-2404.08295","DOIUrl":null,"url":null,"abstract":"How are emotions formed? Through extensive debate and the promulgation of\ndiverse theories , the theory of constructed emotion has become prevalent in\nrecent research on emotions. According to this theory, an emotion concept\nrefers to a category formed by interoceptive and exteroceptive information\nassociated with a specific emotion. An emotion concept stores past experiences\nas knowledge and can predict unobserved information from acquired information.\nTherefore, in this study, we attempted to model the formation of emotion\nconcepts using a constructionist approach from the perspective of the\nconstructed emotion theory. Particularly, we constructed a model using\nmultilayered multimodal latent Dirichlet allocation , which is a probabilistic\ngenerative model. We then trained the model for each subject using vision,\nphysiology, and word information obtained from multiple people who experienced\ndifferent visual emotion-evoking stimuli. To evaluate the model, we verified\nwhether the formed categories matched human subjectivity and determined whether\nunobserved information could be predicted via categories. The verification\nresults exceeded chance level, suggesting that emotion concept formation can be\nexplained by the proposed model.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Emotion Concept Formation by Integrating Vision, Physiology, and Word Information using Multilayered Multimodal Latent Dirichlet Allocation\",\"authors\":\"Kazuki Tsurumaki, Chie Hieida, Kazuki Miyazawa\",\"doi\":\"arxiv-2404.08295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How are emotions formed? Through extensive debate and the promulgation of\\ndiverse theories , the theory of constructed emotion has become prevalent in\\nrecent research on emotions. According to this theory, an emotion concept\\nrefers to a category formed by interoceptive and exteroceptive information\\nassociated with a specific emotion. An emotion concept stores past experiences\\nas knowledge and can predict unobserved information from acquired information.\\nTherefore, in this study, we attempted to model the formation of emotion\\nconcepts using a constructionist approach from the perspective of the\\nconstructed emotion theory. Particularly, we constructed a model using\\nmultilayered multimodal latent Dirichlet allocation , which is a probabilistic\\ngenerative model. We then trained the model for each subject using vision,\\nphysiology, and word information obtained from multiple people who experienced\\ndifferent visual emotion-evoking stimuli. To evaluate the model, we verified\\nwhether the formed categories matched human subjectivity and determined whether\\nunobserved information could be predicted via categories. The verification\\nresults exceeded chance level, suggesting that emotion concept formation can be\\nexplained by the proposed model.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.08295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪是如何形成的?经过广泛的争论和各种理论的传播,建构情绪理论(the theory of constructed emotion)已成为近期情绪研究的主流。根据这一理论,情绪概念指的是由与特定情绪相关的内感知信息和外感知信息形成的一个类别。因此,在本研究中,我们试图从情绪建构理论的角度,用建构主义方法来模拟情绪概念的形成。特别是,我们使用多层多模态潜狄利克特分配(latent Dirichlet allocation)构建了一个模型,这是一个概率生成模型。然后,我们利用从多个经历过不同视觉情绪诱发刺激的人那里获得的视觉、生理和文字信息,为每个受试者训练模型。为了对模型进行评估,我们验证了所形成的类别是否与人类的主观性相匹配,并确定了未观察到的信息是否可以通过类别进行预测。验证结果超过了偶然水平,表明情绪概念的形成可以用提出的模型来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Emotion Concept Formation by Integrating Vision, Physiology, and Word Information using Multilayered Multimodal Latent Dirichlet Allocation
How are emotions formed? Through extensive debate and the promulgation of diverse theories , the theory of constructed emotion has become prevalent in recent research on emotions. According to this theory, an emotion concept refers to a category formed by interoceptive and exteroceptive information associated with a specific emotion. An emotion concept stores past experiences as knowledge and can predict unobserved information from acquired information. Therefore, in this study, we attempted to model the formation of emotion concepts using a constructionist approach from the perspective of the constructed emotion theory. Particularly, we constructed a model using multilayered multimodal latent Dirichlet allocation , which is a probabilistic generative model. We then trained the model for each subject using vision, physiology, and word information obtained from multiple people who experienced different visual emotion-evoking stimuli. To evaluate the model, we verified whether the formed categories matched human subjectivity and determined whether unobserved information could be predicted via categories. The verification results exceeded chance level, suggesting that emotion concept formation can be explained by the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1