{"title":"用于超高维分散联合学习的网络交替方向乘法","authors":"Wei Dong, Sanying Feng","doi":"10.1002/sta4.669","DOIUrl":null,"url":null,"abstract":"Ultrahigh‐dimensional data analysis has received great achievement in recent years. When the data are stored in multiple clients and the clients can be connected only with each other through a network structure, the implementation of ultrahigh‐dimensional analysis can be numerically challenging or even infeasible. In this work, we study decentralised federated learning for ultrahigh‐dimensional data analysis, where the parameters of interest are estimated via a large amount of devices without data sharing by a network structure. In the local machines, each parallel runs gradient ascent to obtain estimators via the sparsity‐restricted constrained methods. Also, we obtain a global model by aggregating each machine's information via an alternating direction method of multipliers (ADMM) using a concave pairwise fusion penalty between different machines through a network structure. The proposed method can mitigate privacy risks from traditional machine learning, recover the sparsity and provide estimates of all regression coefficients simultaneously. Under mild conditions, we show the convergence and estimation consistency of our method. The promising performance of the method is supported by both simulated and real data examples.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"9 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network alternating direction method of multipliers for ultrahigh‐dimensional decentralised federated learning\",\"authors\":\"Wei Dong, Sanying Feng\",\"doi\":\"10.1002/sta4.669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrahigh‐dimensional data analysis has received great achievement in recent years. When the data are stored in multiple clients and the clients can be connected only with each other through a network structure, the implementation of ultrahigh‐dimensional analysis can be numerically challenging or even infeasible. In this work, we study decentralised federated learning for ultrahigh‐dimensional data analysis, where the parameters of interest are estimated via a large amount of devices without data sharing by a network structure. In the local machines, each parallel runs gradient ascent to obtain estimators via the sparsity‐restricted constrained methods. Also, we obtain a global model by aggregating each machine's information via an alternating direction method of multipliers (ADMM) using a concave pairwise fusion penalty between different machines through a network structure. The proposed method can mitigate privacy risks from traditional machine learning, recover the sparsity and provide estimates of all regression coefficients simultaneously. Under mild conditions, we show the convergence and estimation consistency of our method. The promising performance of the method is supported by both simulated and real data examples.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.669\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.669","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Network alternating direction method of multipliers for ultrahigh‐dimensional decentralised federated learning
Ultrahigh‐dimensional data analysis has received great achievement in recent years. When the data are stored in multiple clients and the clients can be connected only with each other through a network structure, the implementation of ultrahigh‐dimensional analysis can be numerically challenging or even infeasible. In this work, we study decentralised federated learning for ultrahigh‐dimensional data analysis, where the parameters of interest are estimated via a large amount of devices without data sharing by a network structure. In the local machines, each parallel runs gradient ascent to obtain estimators via the sparsity‐restricted constrained methods. Also, we obtain a global model by aggregating each machine's information via an alternating direction method of multipliers (ADMM) using a concave pairwise fusion penalty between different machines through a network structure. The proposed method can mitigate privacy risks from traditional machine learning, recover the sparsity and provide estimates of all regression coefficients simultaneously. Under mild conditions, we show the convergence and estimation consistency of our method. The promising performance of the method is supported by both simulated and real data examples.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.