在高维中介分析中利用中介人之间的潜在关联性

Pub Date : 2024-04-16 DOI:10.1002/sta4.675
Jia Yuan Hu, Marley DeSimone, Qing Wang
{"title":"在高维中介分析中利用中介人之间的潜在关联性","authors":"Jia Yuan Hu, Marley DeSimone, Qing Wang","doi":"10.1002/sta4.675","DOIUrl":null,"url":null,"abstract":"Mediation analysis intends to unveil the underlying relationship between an outcome variable and an exposure variable through one or more intermediate variables called mediators. In recent decades, research on mediation analysis has been focusing on multivariate mediation models, where the number of mediating variables is possibly of high dimension. This paper concerns high-dimensional mediation analysis and proposes a three-step algorithm that extracts and utilizes inter-connectivity among candidate mediators. More specifically, the proposed methodology starts with a screening procedure to reduce the dimensionality of the initial set of candidate mediators, followed by a penalized regression model that incorporates both parameter- and group-wise regularization, and ends with fitting a multivariate mediation model and identifying active mediating variables through a joint significance test. To showcase the performance of the proposed algorithm, we conducted two simulation studies in high-dimensional and ultra-high-dimensional settings, respectively. Furthermore, we demonstrate the practical applications of the proposal using a real data set that uncovers the possible impact of environmental toxicants on women's gestational age at delivery through 61 biomarkers that belong to 7 biological pathways.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing latent connectivity among mediators in high-dimensional mediation analysis\",\"authors\":\"Jia Yuan Hu, Marley DeSimone, Qing Wang\",\"doi\":\"10.1002/sta4.675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mediation analysis intends to unveil the underlying relationship between an outcome variable and an exposure variable through one or more intermediate variables called mediators. In recent decades, research on mediation analysis has been focusing on multivariate mediation models, where the number of mediating variables is possibly of high dimension. This paper concerns high-dimensional mediation analysis and proposes a three-step algorithm that extracts and utilizes inter-connectivity among candidate mediators. More specifically, the proposed methodology starts with a screening procedure to reduce the dimensionality of the initial set of candidate mediators, followed by a penalized regression model that incorporates both parameter- and group-wise regularization, and ends with fitting a multivariate mediation model and identifying active mediating variables through a joint significance test. To showcase the performance of the proposed algorithm, we conducted two simulation studies in high-dimensional and ultra-high-dimensional settings, respectively. Furthermore, we demonstrate the practical applications of the proposal using a real data set that uncovers the possible impact of environmental toxicants on women's gestational age at delivery through 61 biomarkers that belong to 7 biological pathways.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中介分析旨在通过一个或多个被称为中介变量的中间变量,揭示结果变量与暴露变量之间的内在关系。近几十年来,中介分析的研究主要集中在多变量中介模型上,中介变量的数量可能是高维的。本文关注高维中介分析,并提出了一种三步算法,用于提取和利用候选中介变量之间的相互联系。更具体地说,所提出的方法首先是筛选程序,以降低初始候选中介变量集的维度,然后是包含参数正则化和分组正则化的惩罚回归模型,最后是拟合多元中介模型,并通过联合显著性检验确定活跃的中介变量。为了展示所提算法的性能,我们分别在高维和超高维环境下进行了两次模拟研究。此外,我们还利用一个真实数据集展示了该建议的实际应用,该数据集通过隶属于 7 条生物通路的 61 个生物标志物揭示了环境毒物对妇女分娩时胎龄的可能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Utilizing latent connectivity among mediators in high-dimensional mediation analysis
Mediation analysis intends to unveil the underlying relationship between an outcome variable and an exposure variable through one or more intermediate variables called mediators. In recent decades, research on mediation analysis has been focusing on multivariate mediation models, where the number of mediating variables is possibly of high dimension. This paper concerns high-dimensional mediation analysis and proposes a three-step algorithm that extracts and utilizes inter-connectivity among candidate mediators. More specifically, the proposed methodology starts with a screening procedure to reduce the dimensionality of the initial set of candidate mediators, followed by a penalized regression model that incorporates both parameter- and group-wise regularization, and ends with fitting a multivariate mediation model and identifying active mediating variables through a joint significance test. To showcase the performance of the proposed algorithm, we conducted two simulation studies in high-dimensional and ultra-high-dimensional settings, respectively. Furthermore, we demonstrate the practical applications of the proposal using a real data set that uncovers the possible impact of environmental toxicants on women's gestational age at delivery through 61 biomarkers that belong to 7 biological pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1