Christine E. Mundy, Marietjie Potgieter and Michael K. Seery
{"title":"揭示光谱学入门中的语言障碍","authors":"Christine E. Mundy, Marietjie Potgieter and Michael K. Seery","doi":"10.1039/D3RP00347G","DOIUrl":null,"url":null,"abstract":"<p >General spectroscopy is known to be difficult for novice students due to its complex and abstract nature. In this study we used a first-year chemistry Mini Spec laboratory activity to uncover language barriers to student learning in spectroscopy. Analysis revealed that language barriers generated conceptual difficulties for English as Second Language (ESL) students. As well as demonstrating difficulty with understanding of the origin of spectral lines identified in prior research, this work surfaces previously unreported language difficulties which were characterized in terms of technical and non-technical language. These include observations that ‘refract’ and ‘diffract’ appeared poorly delineated for students, the teleological animism of ‘jump’ to describe excited electron transitions towards the ground state, and the non-technical term ‘discrete’ being difficult for students to understand and construct meaning for. In addition to this, students battled with the symbolic language required to depict the formation of spectral lines. Several solutions to the language difficulty are proposed including the re-sequencing of macroscopic, sub-microscopic and symbolic teaching and reconsidering the usefulness of certain non-technical terms for teaching and learning spectroscopy.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 3","pages":" 786-798"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shedding light on language difficulties in introductory spectroscopy\",\"authors\":\"Christine E. Mundy, Marietjie Potgieter and Michael K. Seery\",\"doi\":\"10.1039/D3RP00347G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >General spectroscopy is known to be difficult for novice students due to its complex and abstract nature. In this study we used a first-year chemistry Mini Spec laboratory activity to uncover language barriers to student learning in spectroscopy. Analysis revealed that language barriers generated conceptual difficulties for English as Second Language (ESL) students. As well as demonstrating difficulty with understanding of the origin of spectral lines identified in prior research, this work surfaces previously unreported language difficulties which were characterized in terms of technical and non-technical language. These include observations that ‘refract’ and ‘diffract’ appeared poorly delineated for students, the teleological animism of ‘jump’ to describe excited electron transitions towards the ground state, and the non-technical term ‘discrete’ being difficult for students to understand and construct meaning for. In addition to this, students battled with the symbolic language required to depict the formation of spectral lines. Several solutions to the language difficulty are proposed including the re-sequencing of macroscopic, sub-microscopic and symbolic teaching and reconsidering the usefulness of certain non-technical terms for teaching and learning spectroscopy.</p>\",\"PeriodicalId\":69,\"journal\":{\"name\":\"Chemistry Education Research and Practice\",\"volume\":\" 3\",\"pages\":\" 786-798\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Education Research and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d3rp00347g\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d3rp00347g","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Shedding light on language difficulties in introductory spectroscopy
General spectroscopy is known to be difficult for novice students due to its complex and abstract nature. In this study we used a first-year chemistry Mini Spec laboratory activity to uncover language barriers to student learning in spectroscopy. Analysis revealed that language barriers generated conceptual difficulties for English as Second Language (ESL) students. As well as demonstrating difficulty with understanding of the origin of spectral lines identified in prior research, this work surfaces previously unreported language difficulties which were characterized in terms of technical and non-technical language. These include observations that ‘refract’ and ‘diffract’ appeared poorly delineated for students, the teleological animism of ‘jump’ to describe excited electron transitions towards the ground state, and the non-technical term ‘discrete’ being difficult for students to understand and construct meaning for. In addition to this, students battled with the symbolic language required to depict the formation of spectral lines. Several solutions to the language difficulty are proposed including the re-sequencing of macroscopic, sub-microscopic and symbolic teaching and reconsidering the usefulness of certain non-technical terms for teaching and learning spectroscopy.