Paula Nieto Morales, Arianna N. Coons, Amelia J. Koopman, Sonu Patel, P. Bryant Chase, Michelle S. Parvatiyar, Jose R. Pinto
{"title":"脊椎动物横纹肌肌球蛋白重链的翻译后修饰","authors":"Paula Nieto Morales, Arianna N. Coons, Amelia J. Koopman, Sonu Patel, P. Bryant Chase, Michelle S. Parvatiyar, Jose R. Pinto","doi":"10.1002/cm.21857","DOIUrl":null,"url":null,"abstract":"Post‐translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N‐terminal head domain, while the two MyHC C‐terminal tails form a coiled‐coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine‐tuning the activity of these proteins.","PeriodicalId":55186,"journal":{"name":"Cytoskeleton","volume":"51 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post‐translational modifications of vertebrate striated muscle myosin heavy chains\",\"authors\":\"Paula Nieto Morales, Arianna N. Coons, Amelia J. Koopman, Sonu Patel, P. Bryant Chase, Michelle S. Parvatiyar, Jose R. Pinto\",\"doi\":\"10.1002/cm.21857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post‐translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N‐terminal head domain, while the two MyHC C‐terminal tails form a coiled‐coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine‐tuning the activity of these proteins.\",\"PeriodicalId\":55186,\"journal\":{\"name\":\"Cytoskeleton\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytoskeleton\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cm.21857\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cm.21857","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Post‐translational modifications of vertebrate striated muscle myosin heavy chains
Post‐translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N‐terminal head domain, while the two MyHC C‐terminal tails form a coiled‐coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine‐tuning the activity of these proteins.
期刊介绍:
Cytoskeleton focuses on all aspects of cytoskeletal research in healthy and diseased states, spanning genetic and cell biological observations, biochemical, biophysical and structural studies, mathematical modeling and theory. This includes, but is certainly not limited to, classic polymer systems of eukaryotic cells and their structural sites of attachment on membranes and organelles, as well as the bacterial cytoskeleton, the nucleoskeleton, and uncoventional polymer systems with structural/organizational roles. Cytoskeleton is published in 12 issues annually, and special issues will be dedicated to especially-active or newly-emerging areas of cytoskeletal research.