{"title":"重要性剖面图原子基集要求的可视化","authors":"Susi Lehtola","doi":"10.1088/2516-1075/ad31ca","DOIUrl":null,"url":null,"abstract":"Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function <inline-formula>\n<tex-math><?CDATA $|\\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> centered on some nucleus can be visualized by projecting <inline-formula>\n<tex-math><?CDATA $|\\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> on the set of numerically represented occupied orbitals <inline-formula>\n<tex-math><?CDATA $|\\psi_{i}\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> as <inline-formula>\n<tex-math><?CDATA $I_{0}(\\alpha) = \\sum_{i}\\langle\\alpha|\\psi_{i}\\rangle\\langle\\psi_{i}|\\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:munder><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:munder><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:mi>α</mml:mi><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Choosing <italic toggle=\"yes\">α</italic> to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visualization <inline-formula>\n<tex-math><?CDATA $I_{0}(\\alpha)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> has the important property <inline-formula>\n<tex-math><?CDATA $0\\unicode{x2A7D} I_{0}(\\alpha)\\unicode{x2A7D}1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>0</mml:mn><mml:mtext>⩽</mml:mtext><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mtext>⩽</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> which allows unambiguous interpretation. We also propose a straightforward generalization of the importance profile for polyatomic applications <inline-formula>\n<tex-math><?CDATA $I(\\alpha)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>I</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, in which the importance of a test function <inline-formula>\n<tex-math><?CDATA $\\vert \\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is measured as the increase in projection from the atomic minimal basis. We exemplify the methods with importance profiles computed for atoms from the first three rows, and for a set of chemically diverse diatomic molecules. We find that the importance profile offers a way to visualize the atomic basis set requirements for a given system in an <italic toggle=\"yes\">a priori</italic> manner, provided that a fully numerical reference wave function is available.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance profiles. Visualization of atomic basis set requirements\",\"authors\":\"Susi Lehtola\",\"doi\":\"10.1088/2516-1075/ad31ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function <inline-formula>\\n<tex-math><?CDATA $|\\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> centered on some nucleus can be visualized by projecting <inline-formula>\\n<tex-math><?CDATA $|\\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> on the set of numerically represented occupied orbitals <inline-formula>\\n<tex-math><?CDATA $|\\\\psi_{i}\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> as <inline-formula>\\n<tex-math><?CDATA $I_{0}(\\\\alpha) = \\\\sum_{i}\\\\langle\\\\alpha|\\\\psi_{i}\\\\rangle\\\\langle\\\\psi_{i}|\\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>=</mml:mo><mml:munder><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:munder><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:mi>α</mml:mi><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Choosing <italic toggle=\\\"yes\\\">α</italic> to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visualization <inline-formula>\\n<tex-math><?CDATA $I_{0}(\\\\alpha)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> has the important property <inline-formula>\\n<tex-math><?CDATA $0\\\\unicode{x2A7D} I_{0}(\\\\alpha)\\\\unicode{x2A7D}1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>0</mml:mn><mml:mtext>⩽</mml:mtext><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mtext>⩽</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> which allows unambiguous interpretation. We also propose a straightforward generalization of the importance profile for polyatomic applications <inline-formula>\\n<tex-math><?CDATA $I(\\\\alpha)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>I</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, in which the importance of a test function <inline-formula>\\n<tex-math><?CDATA $\\\\vert \\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is measured as the increase in projection from the atomic minimal basis. We exemplify the methods with importance profiles computed for atoms from the first three rows, and for a set of chemically diverse diatomic molecules. We find that the importance profile offers a way to visualize the atomic basis set requirements for a given system in an <italic toggle=\\\"yes\\\">a priori</italic> manner, provided that a fully numerical reference wave function is available.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad31ca\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad31ca","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Importance profiles. Visualization of atomic basis set requirements
Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function |α⟩ centered on some nucleus can be visualized by projecting |α⟩ on the set of numerically represented occupied orbitals |ψi⟩ as I0(α)=∑i⟨α|ψi⟩⟨ψi|α⟩. Choosing α to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visualization I0(α) has the important property 0⩽I0(α)⩽1 which allows unambiguous interpretation. We also propose a straightforward generalization of the importance profile for polyatomic applications I(α), in which the importance of a test function |α⟩ is measured as the increase in projection from the atomic minimal basis. We exemplify the methods with importance profiles computed for atoms from the first three rows, and for a set of chemically diverse diatomic molecules. We find that the importance profile offers a way to visualize the atomic basis set requirements for a given system in an a priori manner, provided that a fully numerical reference wave function is available.