用于癌症治疗的纳米材料的体内安全性评估方法

{"title":"用于癌症治疗的纳米材料的体内安全性评估方法","authors":"","doi":"10.1007/s12094-024-03466-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Nanomaterials are extensively used in the diagnosis and treatment of cancer and other diseases because of their distinctive physicochemical properties, including the small size and ease of modification. The approval of numerous nanomaterials for clinical treatment has led to a significant increase in human exposure to these materials. When nanomaterials enter organisms, they interact with DNA, cells, tissues, and organs, potentially causing various adverse effects, such as genotoxicity, reproductive toxicity, immunotoxicity, and damage to tissues and organs. Therefore, it is crucial to elucidate the side effects and toxicity mechanisms of nanomaterials thoroughly before their clinical applications. Although methods for in vitro safety evaluation of nanomaterials are well established, systematic methods for in vivo safety evaluation are still lacking. This review focuses on the in vivo safety evaluation of nanomaterials and explores their potential effects. In addition, the experimental methods for assessing such effects in various disciplines, including toxicology, pharmacology, physiopathology, immunology, and bioinformatics are also discussed.</p>","PeriodicalId":10166,"journal":{"name":"Clinical and Translational Oncology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo safety evaluation method for nanomaterials for cancer therapy\",\"authors\":\"\",\"doi\":\"10.1007/s12094-024-03466-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Nanomaterials are extensively used in the diagnosis and treatment of cancer and other diseases because of their distinctive physicochemical properties, including the small size and ease of modification. The approval of numerous nanomaterials for clinical treatment has led to a significant increase in human exposure to these materials. When nanomaterials enter organisms, they interact with DNA, cells, tissues, and organs, potentially causing various adverse effects, such as genotoxicity, reproductive toxicity, immunotoxicity, and damage to tissues and organs. Therefore, it is crucial to elucidate the side effects and toxicity mechanisms of nanomaterials thoroughly before their clinical applications. Although methods for in vitro safety evaluation of nanomaterials are well established, systematic methods for in vivo safety evaluation are still lacking. This review focuses on the in vivo safety evaluation of nanomaterials and explores their potential effects. In addition, the experimental methods for assessing such effects in various disciplines, including toxicology, pharmacology, physiopathology, immunology, and bioinformatics are also discussed.</p>\",\"PeriodicalId\":10166,\"journal\":{\"name\":\"Clinical and Translational Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12094-024-03466-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12094-024-03466-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 纳米材料因其独特的理化特性,包括尺寸小和易于改性,被广泛用于癌症和其他疾病的诊断和治疗。随着大量纳米材料被批准用于临床治疗,人类接触这些材料的机会大大增加。当纳米材料进入生物体内时,它们会与 DNA、细胞、组织和器官相互作用,可能造成各种不良影响,如遗传毒性、生殖毒性、免疫毒性以及组织和器官损伤。因此,在临床应用之前,彻底阐明纳米材料的副作用和毒性机制至关重要。虽然纳米材料的体外安全性评价方法已经成熟,但体内安全性评价的系统方法仍然缺乏。本综述重点关注纳米材料的体内安全性评价,并探讨其潜在影响。此外,还讨论了毒理学、药理学、生理病理学、免疫学和生物信息学等不同学科评估这些效应的实验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo safety evaluation method for nanomaterials for cancer therapy

Abstract

Nanomaterials are extensively used in the diagnosis and treatment of cancer and other diseases because of their distinctive physicochemical properties, including the small size and ease of modification. The approval of numerous nanomaterials for clinical treatment has led to a significant increase in human exposure to these materials. When nanomaterials enter organisms, they interact with DNA, cells, tissues, and organs, potentially causing various adverse effects, such as genotoxicity, reproductive toxicity, immunotoxicity, and damage to tissues and organs. Therefore, it is crucial to elucidate the side effects and toxicity mechanisms of nanomaterials thoroughly before their clinical applications. Although methods for in vitro safety evaluation of nanomaterials are well established, systematic methods for in vivo safety evaluation are still lacking. This review focuses on the in vivo safety evaluation of nanomaterials and explores their potential effects. In addition, the experimental methods for assessing such effects in various disciplines, including toxicology, pharmacology, physiopathology, immunology, and bioinformatics are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
lncSNHG16 promotes hepatocellular carcinoma development by inhibiting autophagy Efficacy and safety of camrelizumab combined with chemotherapy in the treatment of advanced biliary malignancy and associations between peripheral blood lymphocyte subsets and clinical outcomes Emerging immunologic approaches as cancer anti-angiogenic therapies Safety profile of trastuzumab originator vs biosimilars: a systematic review and meta-analysis of randomized clinical trials Construction and clinical significance of prognostic risk markers based on cancer driver genes in lung adenocarcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1