Anjela L Vogel, Katharine J Thompson, Daniel Straub, Florin Musat, Tony Gutierrez, Sara Kleindienst
{"title":"普氏旋毛虫菌株 PS-1 的萘降解途径中的基因冗余能够应对不同的底物浓度","authors":"Anjela L Vogel, Katharine J Thompson, Daniel Straub, Florin Musat, Tony Gutierrez, Sara Kleindienst","doi":"10.1093/femsec/fiae060","DOIUrl":null,"url":null,"abstract":"Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes (e.g., those encoding ring-hydroxylating dioxygenases; RHDs), has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1β, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. In contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1β genes might be potential target genes to monitor its environmental naphthalene-degradation activity.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"56 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic redundancy in the naphthalene-degradation pathway of Cycloclasticus pugetii strain PS-1 enables response to varying substrate concentrations\",\"authors\":\"Anjela L Vogel, Katharine J Thompson, Daniel Straub, Florin Musat, Tony Gutierrez, Sara Kleindienst\",\"doi\":\"10.1093/femsec/fiae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes (e.g., those encoding ring-hydroxylating dioxygenases; RHDs), has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1β, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. In contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1β genes might be potential target genes to monitor its environmental naphthalene-degradation activity.\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae060\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Genetic redundancy in the naphthalene-degradation pathway of Cycloclasticus pugetii strain PS-1 enables response to varying substrate concentrations
Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes (e.g., those encoding ring-hydroxylating dioxygenases; RHDs), has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1β, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. In contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1β genes might be potential target genes to monitor its environmental naphthalene-degradation activity.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms