Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani
{"title":"利用人工神经网络求解查莫能谱的薛定谔波方程","authors":"Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani","doi":"10.1155/2024/5195790","DOIUrl":null,"url":null,"abstract":"In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 10.4717 9.39034\" width=\"10.4717pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.097,3.132)\"></path></g></svg>,</span> <span><svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 12.9928 10.2124\" width=\"12.9928pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.917,3.132)\"></path></g></svg>,</span> <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 12.0532 9.59912\" width=\"12.0532pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.132)\"><use xlink:href=\"#g50-51\"></use></g></svg>,</span> and <span><svg height=\"9.59912pt\" style=\"vertical-align:-3.63821pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 14.2285 9.59912\" width=\"14.2285pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,2.175,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.156,3.132)\"></path></g></svg>.</span> The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"43 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks\",\"authors\":\"Tariq Mahmood, Jumanah Ahmed Darwish, Talab Hussain, Maqsood Ahmed, Rehan Ahmad Khan Sherwani\",\"doi\":\"10.1155/2024/5195790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including <span><svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 10.4717 9.39034\\\" width=\\\"10.4717pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.097,3.132)\\\"></path></g></svg>,</span> <span><svg height=\\\"10.2124pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -6.78297 12.9928 10.2124\\\" width=\\\"12.9928pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.917,3.132)\\\"></path></g></svg>,</span> <span><svg height=\\\"9.59912pt\\\" style=\\\"vertical-align:-3.63821pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 12.0532 9.59912\\\" width=\\\"12.0532pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.981,3.132)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g></svg>,</span> and <span><svg height=\\\"9.59912pt\\\" style=\\\"vertical-align:-3.63821pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 14.2285 9.59912\\\" width=\\\"14.2285pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,2.175,0)\\\"><use xlink:href=\\\"#g113-244\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.156,3.132)\\\"></path></g></svg>.</span> The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5195790\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/5195790","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Solving Schrödinger Wave Equation for the Charmonium Spectrum Using Artificial Neural Networks
In this study, we solved the Schrödinger wave equation by using effective potential in an artificial neural network (ANN) for the mass spectrum of different charmonium states, including ,,, and . The ANN approach provides an efficient, more general, and continuous solution-approximating strategy, thus eliminating the possibility of skipping any region of interest in mass spectroscopy. The close consistency of ANN results with the already-reported results from numerical and theoretical approaches and experimental ones shows the reliability and accuracy of the ANN approach.
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.