{"title":"低压缺氧暴露可调节纳米药物的组织分布,增强癌症治疗效果","authors":"Ye Tao, Zhongping Chen","doi":"10.1186/s12645-024-00257-3","DOIUrl":null,"url":null,"abstract":"Effective drug delivery of nanomedicines to targeted sites remains challenging. Given that hypobaric hypoxia and hyperbaric oxygen exposure can significantly change pharmacokinetics of drugs, it is interesting to determine whether they can regulate tissue distribution of nanomedicine, especially in tumor, for enhanced cancer therapy. Hypobaric hypoxia exposure improved the pharmacokinetics of paclitaxel-loaded liposomes and facilitated their distribution in the heart and liver, whereas hyperbaric oxygen exposure did not benefit and even impaired the pharmacokinetics and distribution. Particularly, both hypobaric hypoxia and hyperbaric oxygen exposure could not improve the distribution in subcutaneous tumor. Thus, we constructed orthotopic liver tumor model and discussed whether high distribution of the liposomal nanomedicine in the liver, facilitated by hypobaric hypoxia exposure, could ensure their effective accumulation in liver tumor for enhanced cancer therapy. The liposomal nanomedicine with adjuvant hypobaric hypoxia exposure significantly inhibited the growth of orthotopic liver tumor for prolonged survival time, achieved by hypobaric hypoxia-promoted accumulation at tumor sites of the liver. It might be the first example of the application of adjuvant intermittent hypobaric hypoxia exposure in treating liver cancer.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"17 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypobaric hypoxia exposure regulates tissue distribution of nanomedicine for enhanced cancer therapy\",\"authors\":\"Ye Tao, Zhongping Chen\",\"doi\":\"10.1186/s12645-024-00257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective drug delivery of nanomedicines to targeted sites remains challenging. Given that hypobaric hypoxia and hyperbaric oxygen exposure can significantly change pharmacokinetics of drugs, it is interesting to determine whether they can regulate tissue distribution of nanomedicine, especially in tumor, for enhanced cancer therapy. Hypobaric hypoxia exposure improved the pharmacokinetics of paclitaxel-loaded liposomes and facilitated their distribution in the heart and liver, whereas hyperbaric oxygen exposure did not benefit and even impaired the pharmacokinetics and distribution. Particularly, both hypobaric hypoxia and hyperbaric oxygen exposure could not improve the distribution in subcutaneous tumor. Thus, we constructed orthotopic liver tumor model and discussed whether high distribution of the liposomal nanomedicine in the liver, facilitated by hypobaric hypoxia exposure, could ensure their effective accumulation in liver tumor for enhanced cancer therapy. The liposomal nanomedicine with adjuvant hypobaric hypoxia exposure significantly inhibited the growth of orthotopic liver tumor for prolonged survival time, achieved by hypobaric hypoxia-promoted accumulation at tumor sites of the liver. It might be the first example of the application of adjuvant intermittent hypobaric hypoxia exposure in treating liver cancer.\",\"PeriodicalId\":9408,\"journal\":{\"name\":\"Cancer Nanotechnology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12645-024-00257-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12645-024-00257-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Hypobaric hypoxia exposure regulates tissue distribution of nanomedicine for enhanced cancer therapy
Effective drug delivery of nanomedicines to targeted sites remains challenging. Given that hypobaric hypoxia and hyperbaric oxygen exposure can significantly change pharmacokinetics of drugs, it is interesting to determine whether they can regulate tissue distribution of nanomedicine, especially in tumor, for enhanced cancer therapy. Hypobaric hypoxia exposure improved the pharmacokinetics of paclitaxel-loaded liposomes and facilitated their distribution in the heart and liver, whereas hyperbaric oxygen exposure did not benefit and even impaired the pharmacokinetics and distribution. Particularly, both hypobaric hypoxia and hyperbaric oxygen exposure could not improve the distribution in subcutaneous tumor. Thus, we constructed orthotopic liver tumor model and discussed whether high distribution of the liposomal nanomedicine in the liver, facilitated by hypobaric hypoxia exposure, could ensure their effective accumulation in liver tumor for enhanced cancer therapy. The liposomal nanomedicine with adjuvant hypobaric hypoxia exposure significantly inhibited the growth of orthotopic liver tumor for prolonged survival time, achieved by hypobaric hypoxia-promoted accumulation at tumor sites of the liver. It might be the first example of the application of adjuvant intermittent hypobaric hypoxia exposure in treating liver cancer.
Cancer NanotechnologyPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍:
Aim:
Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas.
Scope:
Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.