Pub Date : 2024-09-18DOI: 10.1186/s12645-024-00286-y
Kaumudi Pande, B. K. Bettadaiah, Anbarasu Kannan
Major therapeutic developments have been made in the prevention of head and neck cancer (HNC), and crucial measures have been implemented for the survival of patients. The advent of cancer nano-theranostic as an effective approach targets cancer by allowing drug aggregation at the tumour site, its proper bioaccessibility, and tumour cell death. Curd exosomes are the cellular interactive nanovesicles, considered a convenient conveyance medium for cargoes still unexplored. Curcumin analogue alanine is primarily recognised for its superior radical scavenging activity and anti-mutagen properties compared with curcumin. The current study focussed on the isolation and characterisation of curd exosomes, followed by their interaction with cancer cells to deliver their content conveniently. Herein, we developed a nanoformulation of curd exosomes loaded with curcumin alanine to determine its bioaccessibility and anti-proliferative effect compared with curcumin alanine free drug. In addition, the influence of curcumin alanine and its nanoformulation on cell morphology, nucleus structures, colony formation potential, and tumour cell death was observed. The expression of EphA2 and its associated molecules was determined using western blot and PCR to explore the mechanism at the cellular level. The recent investigation revealed the encapsulation of curcumin analogue alanine in curd exosomes enhanced the bioaccessibility in contrast with curcumin alanine. Then, we focussed on the curcumin alanine effect on HNC cells to monitor morphological alterations, a reduction in cell multiplication, and triggering apoptosis. Particularly, we found considerable suppression of EphA2 influencing mitochondrial dynamics with the strengthening of mitochondrial fusion MFN1 and MFN2, whereas fission-associated protein DRP1 was down-regulated by the treatment of curcumin alanine nanoformulation. Furthermore, curcumin alanine nanoformulation activates the apoptotic marker caspase-7 and suppresses the anti-apoptotic marker Bcl-xL. Hence, these findings have drawn attention to curd exosomes loaded curcumin alanine nanoformulation impairing cell multiplication and mitochondrial fission, leading to apoptotic cell death, as one of the effective approaches for the treatment of HNC.
{"title":"A biocompatible nanoformulation of curcumin analogue and curd exosomes targeting EphA2 signalling cascade in head and neck cancer","authors":"Kaumudi Pande, B. K. Bettadaiah, Anbarasu Kannan","doi":"10.1186/s12645-024-00286-y","DOIUrl":"https://doi.org/10.1186/s12645-024-00286-y","url":null,"abstract":"Major therapeutic developments have been made in the prevention of head and neck cancer (HNC), and crucial measures have been implemented for the survival of patients. The advent of cancer nano-theranostic as an effective approach targets cancer by allowing drug aggregation at the tumour site, its proper bioaccessibility, and tumour cell death. Curd exosomes are the cellular interactive nanovesicles, considered a convenient conveyance medium for cargoes still unexplored. Curcumin analogue alanine is primarily recognised for its superior radical scavenging activity and anti-mutagen properties compared with curcumin. The current study focussed on the isolation and characterisation of curd exosomes, followed by their interaction with cancer cells to deliver their content conveniently. Herein, we developed a nanoformulation of curd exosomes loaded with curcumin alanine to determine its bioaccessibility and anti-proliferative effect compared with curcumin alanine free drug. In addition, the influence of curcumin alanine and its nanoformulation on cell morphology, nucleus structures, colony formation potential, and tumour cell death was observed. The expression of EphA2 and its associated molecules was determined using western blot and PCR to explore the mechanism at the cellular level. The recent investigation revealed the encapsulation of curcumin analogue alanine in curd exosomes enhanced the bioaccessibility in contrast with curcumin alanine. Then, we focussed on the curcumin alanine effect on HNC cells to monitor morphological alterations, a reduction in cell multiplication, and triggering apoptosis. Particularly, we found considerable suppression of EphA2 influencing mitochondrial dynamics with the strengthening of mitochondrial fusion MFN1 and MFN2, whereas fission-associated protein DRP1 was down-regulated by the treatment of curcumin alanine nanoformulation. Furthermore, curcumin alanine nanoformulation activates the apoptotic marker caspase-7 and suppresses the anti-apoptotic marker Bcl-xL. Hence, these findings have drawn attention to curd exosomes loaded curcumin alanine nanoformulation impairing cell multiplication and mitochondrial fission, leading to apoptotic cell death, as one of the effective approaches for the treatment of HNC. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"75 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1186/s12645-024-00289-9
Atiyeh Ale-Ahmad, Sohrab Kazemi, Abdolreza Daraei, Mahdi Sepidarkish, Ali Akbar Moghadamnia, Hadi Parsian
Developing a drug delivery system that can transport a higher concentration to the target cells can improve therapeutic efficacy. This study aimed to develop a novel delivery system for acetyl-11-keto-beta-boswellic Acid (AKBA) using chitosan-sodium alginate–calcium chloride (CS-SA-CaCl2) nanoparticles. The objectives were to evaluate the antiproliferative activity of these nanoparticles against colorectal cancer (CRC) cells and to improve the bioavailability and therapeutic efficacy of AKBA. With an extraction efficiency of 12.64%, AKBA was successfully extracted from the gum resin of B. serrata. The nanoparticle delivery system exhibited superior cytotoxicity against HT29 cells compared to free AKBA, AKBA extract (BA-Ex), and 5-FU. Furthermore, the nanoformulation (nano-BA-Ex) induced apoptosis in HT29 cells more effectively than the other treatments. In vivo results showed that nanoformulation inhibited chemically induced colon tumorigenesis in mice and significantly reduced the number of aberrant crypt foci (ACFs). The developed CS-SA-CaCl2 nanoparticles loaded with AKBA extract exhibit potential as a potent drug delivery mechanism for the colorectal cancer model. Nano-BA-Ex is a promising strategy for enhancing the solubility, bioavailability, and therapeutic efficacy of BA derivatives. With its multiple effects on cancer cells and controlled drug release through nanocapsules, nano-BA-Ex stands out as a compelling candidate for further preclinical and clinical evaluation in CRC therapy.
{"title":"pH-sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo)","authors":"Atiyeh Ale-Ahmad, Sohrab Kazemi, Abdolreza Daraei, Mahdi Sepidarkish, Ali Akbar Moghadamnia, Hadi Parsian","doi":"10.1186/s12645-024-00289-9","DOIUrl":"https://doi.org/10.1186/s12645-024-00289-9","url":null,"abstract":"Developing a drug delivery system that can transport a higher concentration to the target cells can improve therapeutic efficacy. This study aimed to develop a novel delivery system for acetyl-11-keto-beta-boswellic Acid (AKBA) using chitosan-sodium alginate–calcium chloride (CS-SA-CaCl2) nanoparticles. The objectives were to evaluate the antiproliferative activity of these nanoparticles against colorectal cancer (CRC) cells and to improve the bioavailability and therapeutic efficacy of AKBA. With an extraction efficiency of 12.64%, AKBA was successfully extracted from the gum resin of B. serrata. The nanoparticle delivery system exhibited superior cytotoxicity against HT29 cells compared to free AKBA, AKBA extract (BA-Ex), and 5-FU. Furthermore, the nanoformulation (nano-BA-Ex) induced apoptosis in HT29 cells more effectively than the other treatments. In vivo results showed that nanoformulation inhibited chemically induced colon tumorigenesis in mice and significantly reduced the number of aberrant crypt foci (ACFs). The developed CS-SA-CaCl2 nanoparticles loaded with AKBA extract exhibit potential as a potent drug delivery mechanism for the colorectal cancer model. Nano-BA-Ex is a promising strategy for enhancing the solubility, bioavailability, and therapeutic efficacy of BA derivatives. With its multiple effects on cancer cells and controlled drug release through nanocapsules, nano-BA-Ex stands out as a compelling candidate for further preclinical and clinical evaluation in CRC therapy.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"75 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1186/s12645-024-00287-x
Xiuyun Lin, Jie Liu, Guangfeng Wu, Xiu Yang, Wenqiang Yan, Nanfeng Fan, Hui Li
Cancer cells can resist chemotherapy through various mechanisms, diminishing treatment outcomes. Research had indicated that combining miR-122 with doxorubicin (DOX) can improve hepatocellular carcinoma (HCC) therapy. To explore this, we created a one-pot co-delivery system, Fe-miR-122/DOX, by coordinating miR-122, DOX, and FeII ions into nanoparticles. These nanoparticles display uniform particle sizes, well-defined morphology, and exceptional colloidal stability in 10% FBS and 20% FBS solution over 24 h. When the ratio of DOX to miR-122 was set at 20:1, the loading efficiency of both drugs reached 54.7% and 55.5%, respectively. Cell experiments confirmed that Fe-miR-122/DOX efficiently delivers both miR-122 and DOX, enabling cytoplasmic delivery through lysosomal escape, facilitated by the positive charge of the nanoparticles. Functionally, miR-122 increases intracellular accumulation of DOX by downregulating P-glycoprotein (P-gp) expression, and it promotes apoptosis by downregulating B-cell lymphoma 2 (Bcl-2), which leads to the upregulation of Caspase-3. Additionally, Fe-miR-122/DOX disrupts cIAPs-mediated anti-apoptotic signals, downregulates PARP-1 expression, hinders DNA repair, promotes DNA fragmentation, enhances caspase-3 expression, and triggers programmed cell death, synergistically enhancing its antitumor efficacy. This synergistic mechanism disrupts DNA repair, amplifying DNA damage and apoptosis. Our cytotoxicity and apoptosis assays (with a HepG2 cell apoptosis rate of 85.98%) demonstrated the potent antitumor capability of Fe-miR-122/DOX. This innovative system has demonstrated good biocompatibility and has the potential to transform HCC therapy. Future research could focus on optimizing the co-delivery system and assessing its efficacy in clinical trials.
癌细胞会通过各种机制抵抗化疗,从而降低治疗效果。研究表明,将 miR-122 与多柔比星(DOX)结合使用可改善肝细胞癌(HCC)的治疗。为了探索这一点,我们将 miR-122、DOX 和 FeII 离子配伍到纳米颗粒中,创建了一种一锅共给药系统--Fe-miR-122/DOX。当 DOX 与 miR-122 的比例设定为 20:1 时,两种药物的负载效率分别达到 54.7% 和 55.5%。细胞实验证实,Fe-miR-122/DOX 能有效地递送 miR-122 和 DOX,通过溶酶体逸出实现胞质递送,而纳米颗粒的正电荷则有助于溶酶体逸出。在功能上,miR-122 通过下调 P-糖蛋白(P-gp)的表达来增加 DOX 的细胞内蓄积,并通过下调 B 细胞淋巴瘤 2(Bcl-2)来促进细胞凋亡,从而导致 Caspase-3 的上调。此外,Fe-miR-122/DOX 还能破坏 cIAPs 介导的抗凋亡信号,下调 PARP-1 的表达,阻碍 DNA 修复,促进 DNA 断裂,增强 Caspase-3 的表达,引发细胞程序性死亡,从而协同增强其抗肿瘤疗效。这种协同机制破坏了 DNA 修复,扩大了 DNA 损伤和细胞凋亡。我们的细胞毒性和细胞凋亡试验(HepG2 细胞凋亡率为 85.98%)表明,Fe-miR-122/DOX 具有强大的抗肿瘤能力。这一创新系统具有良好的生物相容性,有望改变 HCC 治疗方法。未来的研究重点是优化联合给药系统,并在临床试验中评估其疗效。
{"title":"Enhanced chemotherapy response in hepatocellular carcinoma: synergistic effects of miR-122 and doxorubicin co-delivery system inducing apoptosis and DNA damage","authors":"Xiuyun Lin, Jie Liu, Guangfeng Wu, Xiu Yang, Wenqiang Yan, Nanfeng Fan, Hui Li","doi":"10.1186/s12645-024-00287-x","DOIUrl":"https://doi.org/10.1186/s12645-024-00287-x","url":null,"abstract":"Cancer cells can resist chemotherapy through various mechanisms, diminishing treatment outcomes. Research had indicated that combining miR-122 with doxorubicin (DOX) can improve hepatocellular carcinoma (HCC) therapy. To explore this, we created a one-pot co-delivery system, Fe-miR-122/DOX, by coordinating miR-122, DOX, and FeII ions into nanoparticles. These nanoparticles display uniform particle sizes, well-defined morphology, and exceptional colloidal stability in 10% FBS and 20% FBS solution over 24 h. When the ratio of DOX to miR-122 was set at 20:1, the loading efficiency of both drugs reached 54.7% and 55.5%, respectively. Cell experiments confirmed that Fe-miR-122/DOX efficiently delivers both miR-122 and DOX, enabling cytoplasmic delivery through lysosomal escape, facilitated by the positive charge of the nanoparticles. Functionally, miR-122 increases intracellular accumulation of DOX by downregulating P-glycoprotein (P-gp) expression, and it promotes apoptosis by downregulating B-cell lymphoma 2 (Bcl-2), which leads to the upregulation of Caspase-3. Additionally, Fe-miR-122/DOX disrupts cIAPs-mediated anti-apoptotic signals, downregulates PARP-1 expression, hinders DNA repair, promotes DNA fragmentation, enhances caspase-3 expression, and triggers programmed cell death, synergistically enhancing its antitumor efficacy. This synergistic mechanism disrupts DNA repair, amplifying DNA damage and apoptosis. Our cytotoxicity and apoptosis assays (with a HepG2 cell apoptosis rate of 85.98%) demonstrated the potent antitumor capability of Fe-miR-122/DOX. This innovative system has demonstrated good biocompatibility and has the potential to transform HCC therapy. Future research could focus on optimizing the co-delivery system and assessing its efficacy in clinical trials.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"36 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1186/s12645-024-00285-z
Soheila Montazersaheb, Aziz Eftekhari, Amir Shafaroodi, Soodeh Tavakoli, Sara Jafari, Ayşe Baran, Mehmet Fırat Baran, Sevda Jafari, Elham Ahmadian
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Radiation therapy (RT) is a modality for TNBC management. Radiosensitizers can mitigate the adverse effects of RT. Applying green-synthesized silver nanoparticles (Ag-NPs) from biological sources such as plants is a potential strategy to sensitize cancer cells to radiotherapy due to the low toxicity. Therefore, identifying novel natural sources for synthesizing stable and broadly applicable green-Ag-NPs has gained more attention in cancer therapy. In the present study, we synthesized green- Ag-NPs from pumpkin peel extract and elucidated the impact of green-synthesized Ag-NPs as a radiosensitizer in MDA-MB 231 cells (a model of TNBC). The prepared Ag-NPs had a spherical shape with an average size of 81 nm and a zeta potential of − 9.96 mV. Combination of green-synthesized Ag-NPs with RT exhibited synergistic anticancer effects with an optimum combination index (CI) of 0.49 in MDA-MB-231 cells. Green-synthesized Ag-NPs synergistically potentiated RT-induced apoptosis in MDA-MB-231 cells compared to the corresponding monotherapies. Morphological features of apoptosis were further confirmed by the DAPI–TUNEL staining assay. HIF-1α expression was decreased in cells subjected to combination therapy. Bax and p53 expression increased, whereas Bcl-2 genes decreased. Combination therapy significantly increased the protein level of PERK and CHOP while decreasing cyclin D1 and p-ERK/total ERK levels compared to monotherapies. These findings indicate the potential effect of green-synthesized Ag-NPs as a radiosensitizer for TNBC treatment.
{"title":"Green-synthesized silver nanoparticles from peel extract of pumpkin as a potent radiosensitizer against triple-negative breast cancer (TNBC)","authors":"Soheila Montazersaheb, Aziz Eftekhari, Amir Shafaroodi, Soodeh Tavakoli, Sara Jafari, Ayşe Baran, Mehmet Fırat Baran, Sevda Jafari, Elham Ahmadian","doi":"10.1186/s12645-024-00285-z","DOIUrl":"https://doi.org/10.1186/s12645-024-00285-z","url":null,"abstract":"Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Radiation therapy (RT) is a modality for TNBC management. Radiosensitizers can mitigate the adverse effects of RT. Applying green-synthesized silver nanoparticles (Ag-NPs) from biological sources such as plants is a potential strategy to sensitize cancer cells to radiotherapy due to the low toxicity. Therefore, identifying novel natural sources for synthesizing stable and broadly applicable green-Ag-NPs has gained more attention in cancer therapy. In the present study, we synthesized green- Ag-NPs from pumpkin peel extract and elucidated the impact of green-synthesized Ag-NPs as a radiosensitizer in MDA-MB 231 cells (a model of TNBC). The prepared Ag-NPs had a spherical shape with an average size of 81 nm and a zeta potential of − 9.96 mV. Combination of green-synthesized Ag-NPs with RT exhibited synergistic anticancer effects with an optimum combination index (CI) of 0.49 in MDA-MB-231 cells. Green-synthesized Ag-NPs synergistically potentiated RT-induced apoptosis in MDA-MB-231 cells compared to the corresponding monotherapies. Morphological features of apoptosis were further confirmed by the DAPI–TUNEL staining assay. HIF-1α expression was decreased in cells subjected to combination therapy. Bax and p53 expression increased, whereas Bcl-2 genes decreased. Combination therapy significantly increased the protein level of PERK and CHOP while decreasing cyclin D1 and p-ERK/total ERK levels compared to monotherapies. These findings indicate the potential effect of green-synthesized Ag-NPs as a radiosensitizer for TNBC treatment. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"150 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1186/s12645-024-00282-2
Samir Ali Abd El-Kaream, Doha Farhat Mohamed Zedan, Hagar Mohamed Mohamed, Amal Saleh Mohamed Soliman, Sohier Mahmoud El-Kholey, Mohammed Kamal El-Dein Nasra
Sono-photodynamic therapy (SPDT), which combines photodynamic (PDT) and sonodynamic (SDT) therapies with sensitizers, offers new avenues for cancer treatment. Even though new sensitizers for SPDT have been synthesized with great success, few of them are effectively used. The limited tumor-targeting specificity, inability to transport the sensitizers deeply intratumorally, and the deteriorating tumor microenvironment limit their anti-tumor effectiveness. The current study was carried out aiming at high-frequency ultrasound-assisted drug delivery of chia, cress and flax conjugated hematite iron oxide nanoparticles (CCF–HIONP) for photothermal–photodynamic lung cancer (LCA) treatment in vitro and in vivo as activated cancer treatment up-to-date modality. The study was conducted in vitro on human LCA cells (A-549) and the study protocol application groups in vivo on Swiss albino mice treated with benzo[a]pyrene only and were not received any treatment for inducing LCA, and only after LCA induction the study treatment protocol began, treatment was daily with CCF–HIONP as HIFU–SPDT sensitizer with or without exposure to laser (IRL) or high-frequency ultrasound (HIFU–US) or a combination of laser and/or high-frequency ultrasound for 3 min for 2 weeks. Revealed that HIONP can be employed as effective CCF delivery system that directly targets LCA cells. In addition, CCF–HIONP is a promising HIFU–SPS for HIFU–SPDT and when combined with HIFU–SPDT can be very effective in treatment of LCA–A549 in vitro (cell viability decreased in a dose-dependent basis, the cell cycle progression in G0/G1 was slowed down, and cell death was induced as evidenced by an increase in the population of Pre-G cells, an increase in early and late apoptosis and necrosis, and an increase in autophagic cell death) and benzo[a]pyrene LCA-induce mice in vivo (decreased oxidative stress (MDA), and ameliorated enzymatic and non-enzymatic antioxidants (SOD, GR, GPx, GST, CAT, GSH, and TAC) as well as renal (urea, creatinine) and hepatic (ALT, AST) functions, induced antiproliferative genes (caspase 3,9, p53, Bax, TNFalpha), suppressed antiapoptotic and antiangiogenic genes (Bcl2,VEGF respectively) and effectively reducing the growth of tumors and even leading to cancer cell death. This process could be attributed to photochemical and/or high-frequency sono-chemical activation mechanism HIFU–SPDT. The results indicate that CCF–HIONP has great promise as an innovative, effective delivery system for selective localized treatment of lung cancer that is activated by HIFU–SPDT.
{"title":"High-frequency ultrasound-assisted drug delivery of chia, cress, and flax conjugated hematite iron oxide nanoparticle for sono-photodynamic lung cancer treatment in vitro and in vivo","authors":"Samir Ali Abd El-Kaream, Doha Farhat Mohamed Zedan, Hagar Mohamed Mohamed, Amal Saleh Mohamed Soliman, Sohier Mahmoud El-Kholey, Mohammed Kamal El-Dein Nasra","doi":"10.1186/s12645-024-00282-2","DOIUrl":"https://doi.org/10.1186/s12645-024-00282-2","url":null,"abstract":"Sono-photodynamic therapy (SPDT), which combines photodynamic (PDT) and sonodynamic (SDT) therapies with sensitizers, offers new avenues for cancer treatment. Even though new sensitizers for SPDT have been synthesized with great success, few of them are effectively used. The limited tumor-targeting specificity, inability to transport the sensitizers deeply intratumorally, and the deteriorating tumor microenvironment limit their anti-tumor effectiveness. The current study was carried out aiming at high-frequency ultrasound-assisted drug delivery of chia, cress and flax conjugated hematite iron oxide nanoparticles (CCF–HIONP) for photothermal–photodynamic lung cancer (LCA) treatment in vitro and in vivo as activated cancer treatment up-to-date modality. The study was conducted in vitro on human LCA cells (A-549) and the study protocol application groups in vivo on Swiss albino mice treated with benzo[a]pyrene only and were not received any treatment for inducing LCA, and only after LCA induction the study treatment protocol began, treatment was daily with CCF–HIONP as HIFU–SPDT sensitizer with or without exposure to laser (IRL) or high-frequency ultrasound (HIFU–US) or a combination of laser and/or high-frequency ultrasound for 3 min for 2 weeks. Revealed that HIONP can be employed as effective CCF delivery system that directly targets LCA cells. In addition, CCF–HIONP is a promising HIFU–SPS for HIFU–SPDT and when combined with HIFU–SPDT can be very effective in treatment of LCA–A549 in vitro (cell viability decreased in a dose-dependent basis, the cell cycle progression in G0/G1 was slowed down, and cell death was induced as evidenced by an increase in the population of Pre-G cells, an increase in early and late apoptosis and necrosis, and an increase in autophagic cell death) and benzo[a]pyrene LCA-induce mice in vivo (decreased oxidative stress (MDA), and ameliorated enzymatic and non-enzymatic antioxidants (SOD, GR, GPx, GST, CAT, GSH, and TAC) as well as renal (urea, creatinine) and hepatic (ALT, AST) functions, induced antiproliferative genes (caspase 3,9, p53, Bax, TNFalpha), suppressed antiapoptotic and antiangiogenic genes (Bcl2,VEGF respectively) and effectively reducing the growth of tumors and even leading to cancer cell death. This process could be attributed to photochemical and/or high-frequency sono-chemical activation mechanism HIFU–SPDT. The results indicate that CCF–HIONP has great promise as an innovative, effective delivery system for selective localized treatment of lung cancer that is activated by HIFU–SPDT.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"86 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To investigate the ability of extracellular vesicles (EVs) to deliver oxaliplatin to epidermal growth factor receptor (EGFR+) colorectal cancer cells and increase oxaliplatin’s cytotoxicity. Oxaliplatin was passively loaded into a stable cell line expressing cetuximab in membranes. EVs were collected and characterized for size, and their ability to target EGFR+ cells was tested. Cytotoxicity experiments were performed, and a xenograft cancer animal model was used to confirm the specific accumulation of oxaliplatin-loaded EVs with cetuximab-expressing membranes in EGFR+ cells. EVs with cetuximab-expressing membranes were successfully produced and used to encapsulate oxaliplatin, resulting in consistently sized oxaliplatin-loaded EVs with cetuximab-expressing membranes. The oxaliplatin-loaded EVs with cetuximab-expressing membranes were specifically accumulated by EGFR+ cells, leading to significant cytotoxic effects on these cells. In the animal model, the oxaliplatin-loaded EVs with cetuximab-expressing membranes accumulated specifically in EGFR+ cells and significantly enhanced oxaliplatin’s therapeutic efficacy against EGFR+ cancer cells. EVs with membrane-expressed bioactive molecules are a promising strategy for delivering therapeutic agents to EGFR+ colorectal cancer cells.
{"title":"Maximizing oxaliplatin's impact on EGFR + colorectal cancer through targeted extracellular vesicles","authors":"Shang-Tao Chien, Yi-Jung Huang, Ming-Yii Huang, Yi-Ping Fang, Shi-Wei Chao, Chia-Tse Li, Wun-Ya Jhang, Yun-Han Hsu, Shuo-Hung Wang, Chih-Hung Chuang","doi":"10.1186/s12645-024-00284-0","DOIUrl":"https://doi.org/10.1186/s12645-024-00284-0","url":null,"abstract":"To investigate the ability of extracellular vesicles (EVs) to deliver oxaliplatin to epidermal growth factor receptor (EGFR+) colorectal cancer cells and increase oxaliplatin’s cytotoxicity. Oxaliplatin was passively loaded into a stable cell line expressing cetuximab in membranes. EVs were collected and characterized for size, and their ability to target EGFR+ cells was tested. Cytotoxicity experiments were performed, and a xenograft cancer animal model was used to confirm the specific accumulation of oxaliplatin-loaded EVs with cetuximab-expressing membranes in EGFR+ cells. EVs with cetuximab-expressing membranes were successfully produced and used to encapsulate oxaliplatin, resulting in consistently sized oxaliplatin-loaded EVs with cetuximab-expressing membranes. The oxaliplatin-loaded EVs with cetuximab-expressing membranes were specifically accumulated by EGFR+ cells, leading to significant cytotoxic effects on these cells. In the animal model, the oxaliplatin-loaded EVs with cetuximab-expressing membranes accumulated specifically in EGFR+ cells and significantly enhanced oxaliplatin’s therapeutic efficacy against EGFR+ cancer cells. EVs with membrane-expressed bioactive molecules are a promising strategy for delivering therapeutic agents to EGFR+ colorectal cancer cells. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"5 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><b>Correction: Cancer Nanotechnology (2023) 14:78 </b><b>https://doi.org/10.1186/s12645-023-00230-6</b></p><p>In this article, the author name Tung-Ho Wu was incorrectly written as Dung-Ho Wu. The affiliation of the author is given in this correction.</p><p>The original article has been corrected.</p><h3>Authors and Affiliations</h3><ol><li><p>Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan</p><p>Huei-Jen Chen, Yi-An Cheng, Bo-Cheng Huang & Tian-Lu Cheng</p></li><li><p>Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Huei-Jen Chen, Yu-Tung Chen, Chia-Ching Li, Shih-Ting Hong & Steve R. Rofer</p></li><li><p>Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Bo-Cheng Huang, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Jaw-Yuan Wang & Tian-Lu Cheng</p></li><li><p>Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Tian-Lu Cheng</p></li><li><p>Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Chiao-Yun Chen</p></li><li><p>School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Chiao-Yun Chen</p></li><li><p>Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</p><p>Steve R. Rofer</p></li><li><p>Department of Cardiovascular Surgeon, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan</p><p>Tung-Ho Wu</p></li><li><p>School of Medicine, I-Shou University, Kaohsiung, Taiwan</p><p>I.-Ju Chen</p></li></ol><span>Authors</span><ol><li><span>Huei-Jen Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yi-An Cheng</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu-Tung Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Chia-Ching Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Bo-Cheng Huang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Shih-Ting Hong</span>View author publications<p>You can also search for this author in <span>P
复制到剪贴板 由 Springer Nature SharedIt 内容共享计划提供
{"title":"Correction: Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20)","authors":"Huei-Jen Chen, Yi-An Cheng, Yu-Tung Chen, Chia-Ching Li, Bo-Cheng Huang, Shih-Ting Hong, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Fang-Ming Chen, Jaw-Yuan Wang, Steve R. Rofer, Tian-Lu Cheng, Tung-Ho Wu","doi":"10.1186/s12645-024-00280-4","DOIUrl":"https://doi.org/10.1186/s12645-024-00280-4","url":null,"abstract":"<p><b>Correction: Cancer Nanotechnology (2023) 14:78 </b><b>https://doi.org/10.1186/s12645-023-00230-6</b></p><p>In this article, the author name Tung-Ho Wu was incorrectly written as Dung-Ho Wu. The affiliation of the author is given in this correction.</p><p>The original article has been corrected.</p><h3>Authors and Affiliations</h3><ol><li><p>Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan</p><p>Huei-Jen Chen, Yi-An Cheng, Bo-Cheng Huang & Tian-Lu Cheng</p></li><li><p>Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Huei-Jen Chen, Yu-Tung Chen, Chia-Ching Li, Shih-Ting Hong & Steve R. Rofer</p></li><li><p>Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Bo-Cheng Huang, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Jaw-Yuan Wang & Tian-Lu Cheng</p></li><li><p>Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Tian-Lu Cheng</p></li><li><p>Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Chiao-Yun Chen</p></li><li><p>School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Chiao-Yun Chen</p></li><li><p>Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</p><p>Steve R. Rofer</p></li><li><p>Department of Cardiovascular Surgeon, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan</p><p>Tung-Ho Wu</p></li><li><p>School of Medicine, I-Shou University, Kaohsiung, Taiwan</p><p>I.-Ju Chen</p></li></ol><span>Authors</span><ol><li><span>Huei-Jen Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yi-An Cheng</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu-Tung Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Chia-Ching Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Bo-Cheng Huang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Shih-Ting Hong</span>View author publications<p>You can also search for this author in <span>P","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"530 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1186/s12645-024-00279-x
Kousain Kousar, Faiza Naseer, Maisa S. Abduh, Sadia Anjum, Tahir Ahmad
<p><b>Retraction</b><b>: </b><b>Cancer Nanotechnology (2023) 14:71 </b><b>https://doi.org/10.1186/s12645-023-00220-8</b></p><p>The Editors-in-Chief have retracted this article. After publication, concerns were raised regarding overlapping images in the presented data. Specifically:</p><p>Multiple images in Fig. 8a appear highly similar to those in Fig. 17 in Naseer et al. (2023), representing different groups.</p><p>Multiple images in Fig. 8b appear highly similar to those in Fig. 18 in Naseer et al. (2023), representing different groups.</p><ul>