首页 > 最新文献

Cancer Nanotechnology最新文献

英文 中文
A biocompatible nanoformulation of curcumin analogue and curd exosomes targeting EphA2 signalling cascade in head and neck cancer 针对头颈癌 EphA2 信号级联的姜黄素类似物和凝乳外泌体的生物相容性纳米制剂
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-09-18 DOI: 10.1186/s12645-024-00286-y
Kaumudi Pande, B. K. Bettadaiah, Anbarasu Kannan
Major therapeutic developments have been made in the prevention of head and neck cancer (HNC), and crucial measures have been implemented for the survival of patients. The advent of cancer nano-theranostic as an effective approach targets cancer by allowing drug aggregation at the tumour site, its proper bioaccessibility, and tumour cell death. Curd exosomes are the cellular interactive nanovesicles, considered a convenient conveyance medium for cargoes still unexplored. Curcumin analogue alanine is primarily recognised for its superior radical scavenging activity and anti-mutagen properties compared with curcumin. The current study focussed on the isolation and characterisation of curd exosomes, followed by their interaction with cancer cells to deliver their content conveniently. Herein, we developed a nanoformulation of curd exosomes loaded with curcumin alanine to determine its bioaccessibility and anti-proliferative effect compared with curcumin alanine free drug. In addition, the influence of curcumin alanine and its nanoformulation on cell morphology, nucleus structures, colony formation potential, and tumour cell death was observed. The expression of EphA2 and its associated molecules was determined using western blot and PCR to explore the mechanism at the cellular level. The recent investigation revealed the encapsulation of curcumin analogue alanine in curd exosomes enhanced the bioaccessibility in contrast with curcumin alanine. Then, we focussed on the curcumin alanine effect on HNC cells to monitor morphological alterations, a reduction in cell multiplication, and triggering apoptosis. Particularly, we found considerable suppression of EphA2 influencing mitochondrial dynamics with the strengthening of mitochondrial fusion MFN1 and MFN2, whereas fission-associated protein DRP1 was down-regulated by the treatment of curcumin alanine nanoformulation. Furthermore, curcumin alanine nanoformulation activates the apoptotic marker caspase-7 and suppresses the anti-apoptotic marker Bcl-xL. Hence, these findings have drawn attention to curd exosomes loaded curcumin alanine nanoformulation impairing cell multiplication and mitochondrial fission, leading to apoptotic cell death, as one of the effective approaches for the treatment of HNC.
在预防头颈癌(HNC)的治疗方面取得了重大进展,并为患者的生存采取了重要措施。癌症纳米疗法的出现是一种有效的方法,它通过使药物在肿瘤部位聚集、适当的生物可及性和肿瘤细胞死亡来治疗癌症。凝乳外泌体是一种与细胞相互作用的纳米微粒,被认为是一种方便的货物运输介质,但目前仍未被开发。与姜黄素相比,姜黄素类似物丙氨酸具有更强的自由基清除活性和抗突变特性。目前的研究重点是分离和鉴定凝乳外泌体,然后将其与癌细胞相互作用,以方便地传递其中的成分。在此,我们开发了一种负载姜黄素丙氨酸的凝乳外泌体纳米制剂,与不含姜黄素丙氨酸的药物相比,确定其生物可及性和抗增殖效果。此外,还观察了姜黄素丙氨酸及其纳米制剂对细胞形态、细胞核结构、集落形成潜能和肿瘤细胞死亡的影响。研究人员还利用 Western 印迹和 PCR 技术测定了 EphA2 及其相关分子的表达,以探索其在细胞水平的作用机制。最近的研究发现,与姜黄素丙氨酸相比,将姜黄素类似物丙氨酸包裹在凝乳外泌体中可提高生物可及性。随后,我们重点研究了姜黄素丙氨酸对 HNC 细胞的影响,以监测细胞形态的改变、细胞繁殖的减少以及细胞凋亡的触发。特别是,我们发现姜黄素丙氨酸纳米制剂可显著抑制影响线粒体动力学的EphA2,增强线粒体融合蛋白MFN1和MFN2,而裂变相关蛋白DRP1则在姜黄素丙氨酸纳米制剂的处理下被下调。此外,姜黄素丙氨酸纳米制剂还能激活凋亡标志物 Caspase-7 并抑制抗凋亡标志物 Bcl-xL。因此,这些发现引起了人们对姜黄素丙氨酸纳米化的关注,即姜黄素外泌体负载姜黄素丙氨酸纳米化可损害细胞增殖和线粒体分裂,导致细胞凋亡,是治疗 HNC 的有效方法之一。
{"title":"A biocompatible nanoformulation of curcumin analogue and curd exosomes targeting EphA2 signalling cascade in head and neck cancer","authors":"Kaumudi Pande, B. K. Bettadaiah, Anbarasu Kannan","doi":"10.1186/s12645-024-00286-y","DOIUrl":"https://doi.org/10.1186/s12645-024-00286-y","url":null,"abstract":"Major therapeutic developments have been made in the prevention of head and neck cancer (HNC), and crucial measures have been implemented for the survival of patients. The advent of cancer nano-theranostic as an effective approach targets cancer by allowing drug aggregation at the tumour site, its proper bioaccessibility, and tumour cell death. Curd exosomes are the cellular interactive nanovesicles, considered a convenient conveyance medium for cargoes still unexplored. Curcumin analogue alanine is primarily recognised for its superior radical scavenging activity and anti-mutagen properties compared with curcumin. The current study focussed on the isolation and characterisation of curd exosomes, followed by their interaction with cancer cells to deliver their content conveniently. Herein, we developed a nanoformulation of curd exosomes loaded with curcumin alanine to determine its bioaccessibility and anti-proliferative effect compared with curcumin alanine free drug. In addition, the influence of curcumin alanine and its nanoformulation on cell morphology, nucleus structures, colony formation potential, and tumour cell death was observed. The expression of EphA2 and its associated molecules was determined using western blot and PCR to explore the mechanism at the cellular level. The recent investigation revealed the encapsulation of curcumin analogue alanine in curd exosomes enhanced the bioaccessibility in contrast with curcumin alanine. Then, we focussed on the curcumin alanine effect on HNC cells to monitor morphological alterations, a reduction in cell multiplication, and triggering apoptosis. Particularly, we found considerable suppression of EphA2 influencing mitochondrial dynamics with the strengthening of mitochondrial fusion MFN1 and MFN2, whereas fission-associated protein DRP1 was down-regulated by the treatment of curcumin alanine nanoformulation. Furthermore, curcumin alanine nanoformulation activates the apoptotic marker caspase-7 and suppresses the anti-apoptotic marker Bcl-xL. Hence, these findings have drawn attention to curd exosomes loaded curcumin alanine nanoformulation impairing cell multiplication and mitochondrial fission, leading to apoptotic cell death, as one of the effective approaches for the treatment of HNC. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"75 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pH-sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo) 对 pH 值敏感的乙酰基-11-酮基-beta-乳香酸(AKBA)纳米制剂作为一种潜在的结肠腺癌抗增殖剂(体外和体内试验)
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-09-06 DOI: 10.1186/s12645-024-00289-9
Atiyeh Ale-Ahmad, Sohrab Kazemi, Abdolreza Daraei, Mahdi Sepidarkish, Ali Akbar Moghadamnia, Hadi Parsian
Developing a drug delivery system that can transport a higher concentration to the target cells can improve therapeutic efficacy. This study aimed to develop a novel delivery system for acetyl-11-keto-beta-boswellic Acid (AKBA) using chitosan-sodium alginate–calcium chloride (CS-SA-CaCl2) nanoparticles. The objectives were to evaluate the antiproliferative activity of these nanoparticles against colorectal cancer (CRC) cells and to improve the bioavailability and therapeutic efficacy of AKBA. With an extraction efficiency of 12.64%, AKBA was successfully extracted from the gum resin of B. serrata. The nanoparticle delivery system exhibited superior cytotoxicity against HT29 cells compared to free AKBA, AKBA extract (BA-Ex), and 5-FU. Furthermore, the nanoformulation (nano-BA-Ex) induced apoptosis in HT29 cells more effectively than the other treatments. In vivo results showed that nanoformulation inhibited chemically induced colon tumorigenesis in mice and significantly reduced the number of aberrant crypt foci (ACFs). The developed CS-SA-CaCl2 nanoparticles loaded with AKBA extract exhibit potential as a potent drug delivery mechanism for the colorectal cancer model. Nano-BA-Ex is a promising strategy for enhancing the solubility, bioavailability, and therapeutic efficacy of BA derivatives. With its multiple effects on cancer cells and controlled drug release through nanocapsules, nano-BA-Ex stands out as a compelling candidate for further preclinical and clinical evaluation in CRC therapy.
开发一种能将更高浓度的药物输送到靶细胞的给药系统可以提高疗效。本研究旨在利用壳聚糖-海藻酸钠-氯化钙(CS-SA-CaCl2)纳米颗粒开发一种新型乙酰基-11-酮基-beta-乳香酸(AKBA)给药系统。研究目的是评估这些纳米颗粒对结直肠癌(CRC)细胞的抗增殖活性,并提高 AKBA 的生物利用度和疗效。从蛇床子胶树脂中成功提取了AKBA,提取效率为12.64%。与游离AKBA、AKBA提取物(BA-Ex)和5-FU相比,纳米颗粒给药系统对HT29细胞具有更强的细胞毒性。此外,纳米制剂(nano-BA-Ex)比其他处理方法更有效地诱导 HT29 细胞凋亡。体内研究结果表明,纳米制剂抑制了化学诱导的小鼠结肠肿瘤发生,并显著减少了异常隐窝病灶(ACFs)的数量。所开发的负载有 AKBA 提取物的 CS-SA-CaCl2 纳米粒子具有作为结直肠癌模型有效给药机制的潜力。纳米 AKBA-Ex 是提高 BA 衍生物的可溶性、生物利用度和疗效的一种有前途的策略。纳米 BA-Ex 对癌细胞具有多重作用,并可通过纳米胶囊控制药物释放,因此是一种引人注目的候选药物,可用于对 CRC 治疗进行进一步的临床前和临床评估。
{"title":"pH-sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo)","authors":"Atiyeh Ale-Ahmad, Sohrab Kazemi, Abdolreza Daraei, Mahdi Sepidarkish, Ali Akbar Moghadamnia, Hadi Parsian","doi":"10.1186/s12645-024-00289-9","DOIUrl":"https://doi.org/10.1186/s12645-024-00289-9","url":null,"abstract":"Developing a drug delivery system that can transport a higher concentration to the target cells can improve therapeutic efficacy. This study aimed to develop a novel delivery system for acetyl-11-keto-beta-boswellic Acid (AKBA) using chitosan-sodium alginate–calcium chloride (CS-SA-CaCl2) nanoparticles. The objectives were to evaluate the antiproliferative activity of these nanoparticles against colorectal cancer (CRC) cells and to improve the bioavailability and therapeutic efficacy of AKBA. With an extraction efficiency of 12.64%, AKBA was successfully extracted from the gum resin of B. serrata. The nanoparticle delivery system exhibited superior cytotoxicity against HT29 cells compared to free AKBA, AKBA extract (BA-Ex), and 5-FU. Furthermore, the nanoformulation (nano-BA-Ex) induced apoptosis in HT29 cells more effectively than the other treatments. In vivo results showed that nanoformulation inhibited chemically induced colon tumorigenesis in mice and significantly reduced the number of aberrant crypt foci (ACFs). The developed CS-SA-CaCl2 nanoparticles loaded with AKBA extract exhibit potential as a potent drug delivery mechanism for the colorectal cancer model. Nano-BA-Ex is a promising strategy for enhancing the solubility, bioavailability, and therapeutic efficacy of BA derivatives. With its multiple effects on cancer cells and controlled drug release through nanocapsules, nano-BA-Ex stands out as a compelling candidate for further preclinical and clinical evaluation in CRC therapy.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"75 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced chemotherapy response in hepatocellular carcinoma: synergistic effects of miR-122 and doxorubicin co-delivery system inducing apoptosis and DNA damage 增强肝细胞癌的化疗反应:miR-122 和多柔比星联合给药系统诱导细胞凋亡和 DNA 损伤的协同效应
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-08-28 DOI: 10.1186/s12645-024-00287-x
Xiuyun Lin, Jie Liu, Guangfeng Wu, Xiu Yang, Wenqiang Yan, Nanfeng Fan, Hui Li
Cancer cells can resist chemotherapy through various mechanisms, diminishing treatment outcomes. Research had indicated that combining miR-122 with doxorubicin (DOX) can improve hepatocellular carcinoma (HCC) therapy. To explore this, we created a one-pot co-delivery system, Fe-miR-122/DOX, by coordinating miR-122, DOX, and FeII ions into nanoparticles. These nanoparticles display uniform particle sizes, well-defined morphology, and exceptional colloidal stability in 10% FBS and 20% FBS solution over 24 h. When the ratio of DOX to miR-122 was set at 20:1, the loading efficiency of both drugs reached 54.7% and 55.5%, respectively. Cell experiments confirmed that Fe-miR-122/DOX efficiently delivers both miR-122 and DOX, enabling cytoplasmic delivery through lysosomal escape, facilitated by the positive charge of the nanoparticles. Functionally, miR-122 increases intracellular accumulation of DOX by downregulating P-glycoprotein (P-gp) expression, and it promotes apoptosis by downregulating B-cell lymphoma 2 (Bcl-2), which leads to the upregulation of Caspase-3. Additionally, Fe-miR-122/DOX disrupts cIAPs-mediated anti-apoptotic signals, downregulates PARP-1 expression, hinders DNA repair, promotes DNA fragmentation, enhances caspase-3 expression, and triggers programmed cell death, synergistically enhancing its antitumor efficacy. This synergistic mechanism disrupts DNA repair, amplifying DNA damage and apoptosis. Our cytotoxicity and apoptosis assays (with a HepG2 cell apoptosis rate of 85.98%) demonstrated the potent antitumor capability of Fe-miR-122/DOX. This innovative system has demonstrated good biocompatibility and has the potential to transform HCC therapy. Future research could focus on optimizing the co-delivery system and assessing its efficacy in clinical trials.
癌细胞会通过各种机制抵抗化疗,从而降低治疗效果。研究表明,将 miR-122 与多柔比星(DOX)结合使用可改善肝细胞癌(HCC)的治疗。为了探索这一点,我们将 miR-122、DOX 和 FeII 离子配伍到纳米颗粒中,创建了一种一锅共给药系统--Fe-miR-122/DOX。当 DOX 与 miR-122 的比例设定为 20:1 时,两种药物的负载效率分别达到 54.7% 和 55.5%。细胞实验证实,Fe-miR-122/DOX 能有效地递送 miR-122 和 DOX,通过溶酶体逸出实现胞质递送,而纳米颗粒的正电荷则有助于溶酶体逸出。在功能上,miR-122 通过下调 P-糖蛋白(P-gp)的表达来增加 DOX 的细胞内蓄积,并通过下调 B 细胞淋巴瘤 2(Bcl-2)来促进细胞凋亡,从而导致 Caspase-3 的上调。此外,Fe-miR-122/DOX 还能破坏 cIAPs 介导的抗凋亡信号,下调 PARP-1 的表达,阻碍 DNA 修复,促进 DNA 断裂,增强 Caspase-3 的表达,引发细胞程序性死亡,从而协同增强其抗肿瘤疗效。这种协同机制破坏了 DNA 修复,扩大了 DNA 损伤和细胞凋亡。我们的细胞毒性和细胞凋亡试验(HepG2 细胞凋亡率为 85.98%)表明,Fe-miR-122/DOX 具有强大的抗肿瘤能力。这一创新系统具有良好的生物相容性,有望改变 HCC 治疗方法。未来的研究重点是优化联合给药系统,并在临床试验中评估其疗效。
{"title":"Enhanced chemotherapy response in hepatocellular carcinoma: synergistic effects of miR-122 and doxorubicin co-delivery system inducing apoptosis and DNA damage","authors":"Xiuyun Lin, Jie Liu, Guangfeng Wu, Xiu Yang, Wenqiang Yan, Nanfeng Fan, Hui Li","doi":"10.1186/s12645-024-00287-x","DOIUrl":"https://doi.org/10.1186/s12645-024-00287-x","url":null,"abstract":"Cancer cells can resist chemotherapy through various mechanisms, diminishing treatment outcomes. Research had indicated that combining miR-122 with doxorubicin (DOX) can improve hepatocellular carcinoma (HCC) therapy. To explore this, we created a one-pot co-delivery system, Fe-miR-122/DOX, by coordinating miR-122, DOX, and FeII ions into nanoparticles. These nanoparticles display uniform particle sizes, well-defined morphology, and exceptional colloidal stability in 10% FBS and 20% FBS solution over 24 h. When the ratio of DOX to miR-122 was set at 20:1, the loading efficiency of both drugs reached 54.7% and 55.5%, respectively. Cell experiments confirmed that Fe-miR-122/DOX efficiently delivers both miR-122 and DOX, enabling cytoplasmic delivery through lysosomal escape, facilitated by the positive charge of the nanoparticles. Functionally, miR-122 increases intracellular accumulation of DOX by downregulating P-glycoprotein (P-gp) expression, and it promotes apoptosis by downregulating B-cell lymphoma 2 (Bcl-2), which leads to the upregulation of Caspase-3. Additionally, Fe-miR-122/DOX disrupts cIAPs-mediated anti-apoptotic signals, downregulates PARP-1 expression, hinders DNA repair, promotes DNA fragmentation, enhances caspase-3 expression, and triggers programmed cell death, synergistically enhancing its antitumor efficacy. This synergistic mechanism disrupts DNA repair, amplifying DNA damage and apoptosis. Our cytotoxicity and apoptosis assays (with a HepG2 cell apoptosis rate of 85.98%) demonstrated the potent antitumor capability of Fe-miR-122/DOX. This innovative system has demonstrated good biocompatibility and has the potential to transform HCC therapy. Future research could focus on optimizing the co-delivery system and assessing its efficacy in clinical trials.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"36 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green-synthesized silver nanoparticles from peel extract of pumpkin as a potent radiosensitizer against triple-negative breast cancer (TNBC) 从南瓜皮提取物中提取的绿色合成银纳米粒子可作为抗三阴性乳腺癌(TNBC)的强效放射增敏剂
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-08-21 DOI: 10.1186/s12645-024-00285-z
Soheila Montazersaheb, Aziz Eftekhari, Amir Shafaroodi, Soodeh Tavakoli, Sara Jafari, Ayşe Baran, Mehmet Fırat Baran, Sevda Jafari, Elham Ahmadian
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Radiation therapy (RT) is a modality for TNBC management. Radiosensitizers can mitigate the adverse effects of RT. Applying green-synthesized silver nanoparticles (Ag-NPs) from biological sources such as plants is a potential strategy to sensitize cancer cells to radiotherapy due to the low toxicity. Therefore, identifying novel natural sources for synthesizing stable and broadly applicable green-Ag-NPs has gained more attention in cancer therapy. In the present study, we synthesized green- Ag-NPs from pumpkin peel extract and elucidated the impact of green-synthesized Ag-NPs as a radiosensitizer in MDA-MB 231 cells (a model of TNBC). The prepared Ag-NPs had a spherical shape with an average size of 81 nm and a zeta potential of − 9.96 mV. Combination of green-synthesized Ag-NPs with RT exhibited synergistic anticancer effects with an optimum combination index (CI) of 0.49 in MDA-MB-231 cells. Green-synthesized Ag-NPs synergistically potentiated RT-induced apoptosis in MDA-MB-231 cells compared to the corresponding monotherapies. Morphological features of apoptosis were further confirmed by the DAPI–TUNEL staining assay. HIF-1α expression was decreased in cells subjected to combination therapy. Bax and p53 expression increased, whereas Bcl-2 genes decreased. Combination therapy significantly increased the protein level of PERK and CHOP while decreasing cyclin D1 and p-ERK/total ERK levels compared to monotherapies. These findings indicate the potential effect of green-synthesized Ag-NPs as a radiosensitizer for TNBC treatment.
三阴性乳腺癌(TNBC)是乳腺癌的一种侵袭性亚型。放射治疗(RT)是治疗 TNBC 的一种方法。放射增敏剂可以减轻 RT 的不良反应。从植物等生物来源中提取绿色合成的银纳米粒子(Ag-NPs)毒性低,是使癌细胞对放疗敏感的潜在策略。因此,寻找新的天然来源来合成稳定而广泛适用的绿色银纳米粒子在癌症治疗中越来越受到关注。在本研究中,我们从南瓜皮提取物中合成了绿色Ag-NPs,并阐明了绿色Ag-NPs作为放射增敏剂对MDA-MB 231细胞(TNBC模型)的影响。制备的 Ag-NPs 呈球形,平均尺寸为 81 nm,zeta 电位为 - 9.96 mV。将绿色合成的 Ag-NPs 与 RT 结合使用可在 MDA-MB-231 细胞中发挥协同抗癌作用,最佳结合指数(CI)为 0.49。与相应的单一疗法相比,绿色合成的 Ag-NPs 能协同增强 RT 诱导的 MDA-MB-231 细胞凋亡。DAPI-TUNEL 染色试验进一步证实了细胞凋亡的形态学特征。接受联合疗法的细胞中,HIF-1α的表达减少。Bax和p53表达增加,而Bcl-2基因减少。与单一疗法相比,联合疗法明显提高了 PERK 和 CHOP 的蛋白水平,同时降低了细胞周期蛋白 D1 和 p-ERK/ 总 ERK 水平。这些研究结果表明,绿色合成的Ag-NPs可作为一种放射增敏剂用于TNBC治疗。
{"title":"Green-synthesized silver nanoparticles from peel extract of pumpkin as a potent radiosensitizer against triple-negative breast cancer (TNBC)","authors":"Soheila Montazersaheb, Aziz Eftekhari, Amir Shafaroodi, Soodeh Tavakoli, Sara Jafari, Ayşe Baran, Mehmet Fırat Baran, Sevda Jafari, Elham Ahmadian","doi":"10.1186/s12645-024-00285-z","DOIUrl":"https://doi.org/10.1186/s12645-024-00285-z","url":null,"abstract":"Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Radiation therapy (RT) is a modality for TNBC management. Radiosensitizers can mitigate the adverse effects of RT. Applying green-synthesized silver nanoparticles (Ag-NPs) from biological sources such as plants is a potential strategy to sensitize cancer cells to radiotherapy due to the low toxicity. Therefore, identifying novel natural sources for synthesizing stable and broadly applicable green-Ag-NPs has gained more attention in cancer therapy. In the present study, we synthesized green- Ag-NPs from pumpkin peel extract and elucidated the impact of green-synthesized Ag-NPs as a radiosensitizer in MDA-MB 231 cells (a model of TNBC). The prepared Ag-NPs had a spherical shape with an average size of 81 nm and a zeta potential of − 9.96 mV. Combination of green-synthesized Ag-NPs with RT exhibited synergistic anticancer effects with an optimum combination index (CI) of 0.49 in MDA-MB-231 cells. Green-synthesized Ag-NPs synergistically potentiated RT-induced apoptosis in MDA-MB-231 cells compared to the corresponding monotherapies. Morphological features of apoptosis were further confirmed by the DAPI–TUNEL staining assay. HIF-1α expression was decreased in cells subjected to combination therapy. Bax and p53 expression increased, whereas Bcl-2 genes decreased. Combination therapy significantly increased the protein level of PERK and CHOP while decreasing cyclin D1 and p-ERK/total ERK levels compared to monotherapies. These findings indicate the potential effect of green-synthesized Ag-NPs as a radiosensitizer for TNBC treatment. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"150 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-frequency ultrasound-assisted drug delivery of chia, cress, and flax conjugated hematite iron oxide nanoparticle for sono-photodynamic lung cancer treatment in vitro and in vivo 高频超声辅助奇异果、芹菜和亚麻共轭赤铁矿氧化铁纳米粒子给药,用于体外和体内声光动力肺癌治疗
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-08-17 DOI: 10.1186/s12645-024-00282-2
Samir Ali Abd El-Kaream, Doha Farhat Mohamed Zedan, Hagar Mohamed Mohamed, Amal Saleh Mohamed Soliman, Sohier Mahmoud El-Kholey, Mohammed Kamal El-Dein Nasra
Sono-photodynamic therapy (SPDT), which combines photodynamic (PDT) and sonodynamic (SDT) therapies with sensitizers, offers new avenues for cancer treatment. Even though new sensitizers for SPDT have been synthesized with great success, few of them are effectively used. The limited tumor-targeting specificity, inability to transport the sensitizers deeply intratumorally, and the deteriorating tumor microenvironment limit their anti-tumor effectiveness. The current study was carried out aiming at high-frequency ultrasound-assisted drug delivery of chia, cress and flax conjugated hematite iron oxide nanoparticles (CCF–HIONP) for photothermal–photodynamic lung cancer (LCA) treatment in vitro and in vivo as activated cancer treatment up-to-date modality. The study was conducted in vitro on human LCA cells (A-549) and the study protocol application groups in vivo on Swiss albino mice treated with benzo[a]pyrene only and were not received any treatment for inducing LCA, and only after LCA induction the study treatment protocol began, treatment was daily with CCF–HIONP as HIFU–SPDT sensitizer with or without exposure to laser (IRL) or high-frequency ultrasound (HIFU–US) or a combination of laser and/or high-frequency ultrasound for 3 min for 2 weeks. Revealed that HIONP can be employed as effective CCF delivery system that directly targets LCA cells. In addition, CCF–HIONP is a promising HIFU–SPS for HIFU–SPDT and when combined with HIFU–SPDT can be very effective in treatment of LCA–A549 in vitro (cell viability decreased in a dose-dependent basis, the cell cycle progression in G0/G1 was slowed down, and cell death was induced as evidenced by an increase in the population of Pre-G cells, an increase in early and late apoptosis and necrosis, and an increase in autophagic cell death) and benzo[a]pyrene LCA-induce mice in vivo (decreased oxidative stress (MDA), and ameliorated enzymatic and non-enzymatic antioxidants (SOD, GR, GPx, GST, CAT, GSH, and TAC) as well as renal (urea, creatinine) and hepatic (ALT, AST) functions, induced antiproliferative genes (caspase 3,9, p53, Bax, TNFalpha), suppressed antiapoptotic and antiangiogenic genes (Bcl2,VEGF respectively) and effectively reducing the growth of tumors and even leading to cancer cell death. This process could be attributed to photochemical and/or high-frequency sono-chemical activation mechanism HIFU–SPDT. The results indicate that CCF–HIONP has great promise as an innovative, effective delivery system for selective localized treatment of lung cancer that is activated by HIFU–SPDT.
声光动力疗法(SPDT)将光动力疗法(PDT)和声光动力疗法(SDT)与敏化剂相结合,为癌症治疗提供了新途径。尽管用于 SPDT 的新型增敏剂已成功合成,但有效使用的却很少。肿瘤靶向特异性有限、敏化剂无法在肿瘤内深层运输以及肿瘤微环境的恶化都限制了它们的抗肿瘤效果。目前的研究旨在通过高频超声辅助给药,将奇异果、芹菜和亚麻共轭赤铁矿氧化铁纳米粒子(CCF-HIONP)用于体外和体内的光热-光动力肺癌(LCA)治疗,并将其作为活化癌症治疗的最新模式。研究在体外对人类 LCA 细胞(A-549)进行,研究方案应用组在体内对瑞士白化小鼠进行,只用苯并[a]芘处理,不接受任何诱导 LCA 的治疗,只有在诱导 LCA 后才开始研究治疗方案、每天使用 CCF-HIONP 作为 HIFU-SPDT 增敏剂,同时照射或不照射激光(IRL)或高频超声(HIFU-US),或同时照射激光和/或高频超声 3 分钟,连续治疗 2 周。结果表明,HIONP可作为直接靶向LCA细胞的有效CCF递送系统。此外,CCF-HIONP 是一种很有前途的 HIFU-SPDT HIFU-SPS,当与 HIFU-SPDT 结合使用时,可在体外非常有效地治疗 LCA-A549(细胞活力的降低呈剂量依赖性,细胞周期在 G0/G1 的进展减慢,细胞死亡被诱导,表现为 Pre-G 细胞数量增加,早期和晚期细胞凋亡和坏死增加、和自噬细胞死亡的增加)和苯并[a]芘 LCA 诱导的小鼠体内(氧化应激(MDA)降低,酶和非酶抗氧化剂(SOD、GR、GPx、GST、CAT、GSH 和 TAC)以及肾(尿素、肌酐)和肝(ALT、AST)功能改善,诱导抗抑郁作用)、AST)功能,诱导抗增殖基因(caspase 3、9、p53、Bax、TNFalpha),抑制抗凋亡基因和抗血管生成基因(分别为 Bcl2、VEGF),有效降低肿瘤的生长,甚至导致癌细胞死亡。这一过程可归因于 HIFU-SPDT 的光化学和/或高频声化学激活机制。研究结果表明,CCF-HIONP 作为一种创新、有效的给药系统,有望用于 HIFU-SPDT 激活的肺癌选择性局部治疗。
{"title":"High-frequency ultrasound-assisted drug delivery of chia, cress, and flax conjugated hematite iron oxide nanoparticle for sono-photodynamic lung cancer treatment in vitro and in vivo","authors":"Samir Ali Abd El-Kaream, Doha Farhat Mohamed Zedan, Hagar Mohamed Mohamed, Amal Saleh Mohamed Soliman, Sohier Mahmoud El-Kholey, Mohammed Kamal El-Dein Nasra","doi":"10.1186/s12645-024-00282-2","DOIUrl":"https://doi.org/10.1186/s12645-024-00282-2","url":null,"abstract":"Sono-photodynamic therapy (SPDT), which combines photodynamic (PDT) and sonodynamic (SDT) therapies with sensitizers, offers new avenues for cancer treatment. Even though new sensitizers for SPDT have been synthesized with great success, few of them are effectively used. The limited tumor-targeting specificity, inability to transport the sensitizers deeply intratumorally, and the deteriorating tumor microenvironment limit their anti-tumor effectiveness. The current study was carried out aiming at high-frequency ultrasound-assisted drug delivery of chia, cress and flax conjugated hematite iron oxide nanoparticles (CCF–HIONP) for photothermal–photodynamic lung cancer (LCA) treatment in vitro and in vivo as activated cancer treatment up-to-date modality. The study was conducted in vitro on human LCA cells (A-549) and the study protocol application groups in vivo on Swiss albino mice treated with benzo[a]pyrene only and were not received any treatment for inducing LCA, and only after LCA induction the study treatment protocol began, treatment was daily with CCF–HIONP as HIFU–SPDT sensitizer with or without exposure to laser (IRL) or high-frequency ultrasound (HIFU–US) or a combination of laser and/or high-frequency ultrasound for 3 min for 2 weeks. Revealed that HIONP can be employed as effective CCF delivery system that directly targets LCA cells. In addition, CCF–HIONP is a promising HIFU–SPS for HIFU–SPDT and when combined with HIFU–SPDT can be very effective in treatment of LCA–A549 in vitro (cell viability decreased in a dose-dependent basis, the cell cycle progression in G0/G1 was slowed down, and cell death was induced as evidenced by an increase in the population of Pre-G cells, an increase in early and late apoptosis and necrosis, and an increase in autophagic cell death) and benzo[a]pyrene LCA-induce mice in vivo (decreased oxidative stress (MDA), and ameliorated enzymatic and non-enzymatic antioxidants (SOD, GR, GPx, GST, CAT, GSH, and TAC) as well as renal (urea, creatinine) and hepatic (ALT, AST) functions, induced antiproliferative genes (caspase 3,9, p53, Bax, TNFalpha), suppressed antiapoptotic and antiangiogenic genes (Bcl2,VEGF respectively) and effectively reducing the growth of tumors and even leading to cancer cell death. This process could be attributed to photochemical and/or high-frequency sono-chemical activation mechanism HIFU–SPDT. The results indicate that CCF–HIONP has great promise as an innovative, effective delivery system for selective localized treatment of lung cancer that is activated by HIFU–SPDT.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"86 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing oxaliplatin's impact on EGFR + colorectal cancer through targeted extracellular vesicles 通过靶向细胞外囊泡最大限度地发挥奥沙利铂对表皮生长因子受体(EGFR)+结直肠癌的作用
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-08-17 DOI: 10.1186/s12645-024-00284-0
Shang-Tao Chien, Yi-Jung Huang, Ming-Yii Huang, Yi-Ping Fang, Shi-Wei Chao, Chia-Tse Li, Wun-Ya Jhang, Yun-Han Hsu, Shuo-Hung Wang, Chih-Hung Chuang
To investigate the ability of extracellular vesicles (EVs) to deliver oxaliplatin to epidermal growth factor receptor (EGFR+) colorectal cancer cells and increase oxaliplatin’s cytotoxicity. Oxaliplatin was passively loaded into a stable cell line expressing cetuximab in membranes. EVs were collected and characterized for size, and their ability to target EGFR+ cells was tested. Cytotoxicity experiments were performed, and a xenograft cancer animal model was used to confirm the specific accumulation of oxaliplatin-loaded EVs with cetuximab-expressing membranes in EGFR+ cells. EVs with cetuximab-expressing membranes were successfully produced and used to encapsulate oxaliplatin, resulting in consistently sized oxaliplatin-loaded EVs with cetuximab-expressing membranes. The oxaliplatin-loaded EVs with cetuximab-expressing membranes were specifically accumulated by EGFR+ cells, leading to significant cytotoxic effects on these cells. In the animal model, the oxaliplatin-loaded EVs with cetuximab-expressing membranes accumulated specifically in EGFR+ cells and significantly enhanced oxaliplatin’s therapeutic efficacy against EGFR+ cancer cells. EVs with membrane-expressed bioactive molecules are a promising strategy for delivering therapeutic agents to EGFR+ colorectal cancer cells.
研究细胞外囊泡(EVs)向表皮生长因子受体(EGFR+)结直肠癌细胞递送奥沙利铂并增加奥沙利铂细胞毒性的能力。奥沙利铂被动载入膜表达西妥昔单抗的稳定细胞系。收集 EVs 并确定其大小,测试其靶向表皮生长因子受体(EGFR)+ 细胞的能力。进行了细胞毒性实验,并利用异种移植癌症动物模型证实了表达西妥昔单抗的膜的奥沙利铂负载EVs在表皮生长因子受体(EGFR)+细胞中的特异性蓄积。成功制备了表达西妥昔单抗的EVs,并将其用于包裹奥沙利铂,从而获得了大小一致的表达西妥昔单抗的奥沙利铂负载EVs。带有西妥昔单抗表达膜的奥沙利铂负载EVs可被表皮生长因子受体+细胞特异性蓄积,从而对这些细胞产生显著的细胞毒性作用。在动物模型中,带有西妥昔单抗表达膜的奥沙利铂负载型EVs在表皮生长因子受体(EGFR)+细胞中特异性蓄积,显著增强了奥沙利铂对表皮生长因子受体(EGFR)+癌细胞的疗效。带膜表达生物活性分子的EVs是向表皮生长因子受体(EGFR)+结直肠癌细胞递送治疗药物的一种有前途的策略。
{"title":"Maximizing oxaliplatin's impact on EGFR + colorectal cancer through targeted extracellular vesicles","authors":"Shang-Tao Chien, Yi-Jung Huang, Ming-Yii Huang, Yi-Ping Fang, Shi-Wei Chao, Chia-Tse Li, Wun-Ya Jhang, Yun-Han Hsu, Shuo-Hung Wang, Chih-Hung Chuang","doi":"10.1186/s12645-024-00284-0","DOIUrl":"https://doi.org/10.1186/s12645-024-00284-0","url":null,"abstract":"To investigate the ability of extracellular vesicles (EVs) to deliver oxaliplatin to epidermal growth factor receptor (EGFR+) colorectal cancer cells and increase oxaliplatin’s cytotoxicity. Oxaliplatin was passively loaded into a stable cell line expressing cetuximab in membranes. EVs were collected and characterized for size, and their ability to target EGFR+ cells was tested. Cytotoxicity experiments were performed, and a xenograft cancer animal model was used to confirm the specific accumulation of oxaliplatin-loaded EVs with cetuximab-expressing membranes in EGFR+ cells. EVs with cetuximab-expressing membranes were successfully produced and used to encapsulate oxaliplatin, resulting in consistently sized oxaliplatin-loaded EVs with cetuximab-expressing membranes. The oxaliplatin-loaded EVs with cetuximab-expressing membranes were specifically accumulated by EGFR+ cells, leading to significant cytotoxic effects on these cells. In the animal model, the oxaliplatin-loaded EVs with cetuximab-expressing membranes accumulated specifically in EGFR+ cells and significantly enhanced oxaliplatin’s therapeutic efficacy against EGFR+ cancer cells. EVs with membrane-expressed bioactive molecules are a promising strategy for delivering therapeutic agents to EGFR+ colorectal cancer cells. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"5 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20) 更正:通过抗 PEG 双特异性抗体(mPEG × CD20)靶向和内化 PEG 化纳米药物以提高血液恶性肿瘤的疗效
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-08-06 DOI: 10.1186/s12645-024-00280-4
Huei-Jen Chen, Yi-An Cheng, Yu-Tung Chen, Chia-Ching Li, Bo-Cheng Huang, Shih-Ting Hong, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Fang-Ming Chen, Jaw-Yuan Wang, Steve R. Rofer, Tian-Lu Cheng, Tung-Ho Wu
<p><b>Correction: Cancer Nanotechnology (2023) 14:78 </b><b>https://doi.org/10.1186/s12645-023-00230-6</b></p><p>In this article, the author name Tung-Ho Wu was incorrectly written as Dung-Ho Wu. The affiliation of the author is given in this correction.</p><p>The original article has been corrected.</p><h3>Authors and Affiliations</h3><ol><li><p>Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan</p><p>Huei-Jen Chen, Yi-An Cheng, Bo-Cheng Huang & Tian-Lu Cheng</p></li><li><p>Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Huei-Jen Chen, Yu-Tung Chen, Chia-Ching Li, Shih-Ting Hong & Steve R. Rofer</p></li><li><p>Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Bo-Cheng Huang, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Jaw-Yuan Wang & Tian-Lu Cheng</p></li><li><p>Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Tian-Lu Cheng</p></li><li><p>Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Chiao-Yun Chen</p></li><li><p>School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Chiao-Yun Chen</p></li><li><p>Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan</p><p>Fang-Ming Chen</p></li><li><p>Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan</p><p>Steve R. Rofer</p></li><li><p>Department of Cardiovascular Surgeon, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan</p><p>Tung-Ho Wu</p></li><li><p>School of Medicine, I-Shou University, Kaohsiung, Taiwan</p><p>I.-Ju Chen</p></li></ol><span>Authors</span><ol><li><span>Huei-Jen Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yi-An Cheng</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu-Tung Chen</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Chia-Ching Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Bo-Cheng Huang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Shih-Ting Hong</span>View author publications<p>You can also search for this author in <span>P
复制到剪贴板 由 Springer Nature SharedIt 内容共享计划提供
{"title":"Correction: Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20)","authors":"Huei-Jen Chen, Yi-An Cheng, Yu-Tung Chen, Chia-Ching Li, Bo-Cheng Huang, Shih-Ting Hong, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Fang-Ming Chen, Jaw-Yuan Wang, Steve R. Rofer, Tian-Lu Cheng, Tung-Ho Wu","doi":"10.1186/s12645-024-00280-4","DOIUrl":"https://doi.org/10.1186/s12645-024-00280-4","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction: Cancer Nanotechnology (2023) 14:78 &lt;/b&gt;&lt;b&gt;https://doi.org/10.1186/s12645-023-00230-6&lt;/b&gt;&lt;/p&gt;&lt;p&gt;In this article, the author name Tung-Ho Wu was incorrectly written as Dung-Ho Wu. The affiliation of the author is given in this correction.&lt;/p&gt;&lt;p&gt;The original article has been corrected.&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan&lt;/p&gt;&lt;p&gt;Huei-Jen Chen, Yi-An Cheng, Bo-Cheng Huang &amp; Tian-Lu Cheng&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Huei-Jen Chen, Yu-Tung Chen, Chia-Ching Li, Shih-Ting Hong &amp; Steve R. Rofer&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Bo-Cheng Huang, I.-Ju Chen, Kai-Wen Ho, Chiao-Yun Chen, Jaw-Yuan Wang &amp; Tian-Lu Cheng&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Tian-Lu Cheng&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Chiao-Yun Chen&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Chiao-Yun Chen&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Fang-Ming Chen&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Fang-Ming Chen&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Fang-Ming Chen&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan&lt;/p&gt;&lt;p&gt;Steve R. Rofer&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Cardiovascular Surgeon, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;Tung-Ho Wu&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;School of Medicine, I-Shou University, Kaohsiung, Taiwan&lt;/p&gt;&lt;p&gt;I.-Ju Chen&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Huei-Jen Chen&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Yi-An Cheng&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Yu-Tung Chen&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Chia-Ching Li&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Bo-Cheng Huang&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Shih-Ting Hong&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;P","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"530 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Green synthesis of oncolytic Newcastle disease virus-loaded thiolated chitosan nanoformulation for CD44 targeted delivery and sustained release of virus in cervical cancer xenografts 撤稿说明:绿色合成负载硫醇化壳聚糖的溶瘤新城疫病毒纳米制剂,用于在宫颈癌异种移植物中靶向递送和持续释放病毒
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-07-30 DOI: 10.1186/s12645-024-00279-x
Kousain Kousar, Faiza Naseer, Maisa S. Abduh, Sadia Anjum, Tahir Ahmad
<p><b>Retraction</b><b>: </b><b>Cancer Nanotechnology (2023) 14:71 </b><b>https://doi.org/10.1186/s12645-023-00220-8</b></p><p>The Editors-in-Chief have retracted this article. After publication, concerns were raised regarding overlapping images in the presented data. Specifically:</p><p>Multiple images in Fig. 8a appear highly similar to those in Fig. 17 in Naseer et al. (2023), representing different groups.</p><p>Multiple images in Fig. 8b appear highly similar to those in Fig. 18 in Naseer et al. (2023), representing different groups.</p><ul><li><p>Fig. 8a D1 appears highly similar to Fig. 8b D3.</p></li><li><p>Fig. 8a E1 and E2 appear to overlap with different magnification.</p></li><li><p>Fig. 9a A5 insert (low magnification image) appears highly similar to that in B5.</p></li><li><p>Fig. 9a A9 and b D7 appear to overlap with different contrast.</p></li><li><p>Fig. 9a A10, A12 and B10 appear to overlap.</p></li><li><p>Fig. 9a B1 and b C1, C3 appear to overlap with different magnification.</p></li><li><p>Fig. 9a B3 and b C2, D2 appear to overlap with different magnification and contrast.</p></li><li><p>Fig. 9a B4 and b D4 appear to overlap.</p></li><li><p>Fig. 9a B10 and B11 appear to overlap.</p></li></ul><p>Additionally, the rat body weight data presented in Fig. 5a (~ 160 g at week 1) appear to be contrary to the description in the Methods (200–250 g).</p><p>The Editors-in-Chief therefore no longer have confidence in the presented data.</p><p>None of the authors have responded to any correspondence from the editor or publisher about this retraction notice.</p><ul data-track-component="outbound reference" data-track-context="references section"><li><p>Naseer F, Kousar K, Abduh MS et al (2023) Evaluation of the anticancer potential of CD44 targeted vincristine nanoformulation in prostate cancer xenograft model: a multi-dynamic approach for advanced pharmacokinetic evaluation. Cancer Nanotechnol 14:65. https://doi.org/10.1186/s12645-023-00218-2</p><p>Article CAS Google Scholar </p></li></ul><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan</p><p>Kousain Kousar, Faiza Naseer & Tahir Ahmad</p></li><li><p>Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan</p><p>Faiza Naseer</p></li><li><p>Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia</p><p>Maisa S. Abduh</p></li><li><p>Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia</p><p>Maisa S. Abduh</p></li><
撤稿:Cancer Nanotechnology (2023) 14:71 https://doi.org/10.1186/s12645-023-00220-8The 主编已撤回这篇文章。文章发表后,有人对文中数据中的重叠图像提出了质疑。具体来说:图 8a 中的多幅图像与 Naseer 等人(2023 年)的图 17 中的图像高度相似,代表不同的组别。图 8b 中的多幅图像与 Naseer 等人(2023 年)的图 18 中的图像高度相似,代表不同的组别。图 9a A5 插页(低放大率图像)与 B5 中的插页高度相似。图 9a A9 和 b D7 以不同的对比度出现重叠。此外,图 5a 中显示的大鼠体重数据(第 1 周时约为 160 克)似乎与《方法》中的描述(200-250 克)相反。Naseer F, Kousar K, Abduh MS et al (2023) Evaluation of the anticancer potential of CD44 targeted vincristine nanoformulation in prostate cancer xenograft model: a multi-dynamic approach for advanced pharmacokinetic evaluation.Cancer Nanotechnol 14:65. https://doi.org/10.1186/s12645-023-00218-2Article CAS Google Scholar Download references作者及工作单位巴基斯坦伊斯兰堡国立科技大学阿塔-乌尔-拉赫曼应用生物科学学院工业生物技术Kousain Kousar, Faiza Naseer &;Tahir Ahmad巴基斯坦伊斯兰堡希法塔梅尔-伊-米拉特大学希法制药科学学院法伊扎-纳西尔沙特阿拉伯吉达 21589 阿卜杜勒-阿齐兹国王大学应用医学系医学实验室科学系不同疾病中的免疫反应研究小组麦萨-S.AbduhCenter of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi ArabiaMaisa S. AbduhDepartment of Biology, University of Hail, Hail, Saudi ArabiaSadia AnjumAuthorsKousain KousarView author publications您也可以在PubMed Google Scholar中搜索该作者Faiza NaseerView author publications您也可以在PubMed Google Scholar中搜索该作者Maisa S. Abduh查看作者发表的论文Abduh查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Sadia Anjum查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Tahir Ahmad查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者通信作者Kousain Kousar或Tahir Ahmad.Publisher's NoteSpringer Nature对出版地图和机构隶属关系中的管辖权主张保持中立。开放获取 本文采用知识共享署名 4.0 国际许可协议,该协议允许以任何媒介或格式使用、共享、改编、分发和复制本文,但必须注明原作者和出处,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,您需要直接从版权所有者处获得许可。如需查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。创意共享公共领域专用免责声明(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文提供的数据,除非在数据的信用行中另有说明。 引用本文Kousar, K., Naseer, F., Abduh, M.S. et al. Retraction Note: Green synthesis of oncolytic Newcastle disease virus-loaded thiolated chitosan nanoformulation for CD44 targeted delivery and sustained release of virus in cervical cancer xenografts.Cancer Nano 15, 40 (2024). https://doi.org/10.1186/s12645-024-00279-xDownload citationPublished: 30 July 2024DOI: https://doi.org/10.1186/s12645-024-00279-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative.
{"title":"Retraction Note: Green synthesis of oncolytic Newcastle disease virus-loaded thiolated chitosan nanoformulation for CD44 targeted delivery and sustained release of virus in cervical cancer xenografts","authors":"Kousain Kousar, Faiza Naseer, Maisa S. Abduh, Sadia Anjum, Tahir Ahmad","doi":"10.1186/s12645-024-00279-x","DOIUrl":"https://doi.org/10.1186/s12645-024-00279-x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Retraction&lt;/b&gt;&lt;b&gt;: &lt;/b&gt;&lt;b&gt;Cancer Nanotechnology (2023) 14:71 &lt;/b&gt;&lt;b&gt;https://doi.org/10.1186/s12645-023-00220-8&lt;/b&gt;&lt;/p&gt;&lt;p&gt;The Editors-in-Chief have retracted this article. After publication, concerns were raised regarding overlapping images in the presented data. Specifically:&lt;/p&gt;&lt;p&gt;Multiple images in Fig. 8a appear highly similar to those in Fig. 17 in Naseer et al. (2023), representing different groups.&lt;/p&gt;&lt;p&gt;Multiple images in Fig. 8b appear highly similar to those in Fig. 18 in Naseer et al. (2023), representing different groups.&lt;/p&gt;&lt;ul&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 8a D1 appears highly similar to Fig. 8b D3.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 8a E1 and E2 appear to overlap with different magnification.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a A5 insert (low magnification image) appears highly similar to that in B5.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a A9 and b D7 appear to overlap with different contrast.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a A10, A12 and B10 appear to overlap.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a B1 and b C1, C3 appear to overlap with different magnification.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a B3 and b C2, D2 appear to overlap with different magnification and contrast.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a B4 and b D4 appear to overlap.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 9a B10 and B11 appear to overlap.&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;/ul&gt;&lt;p&gt;Additionally, the rat body weight data presented in Fig. 5a (~ 160 g at week 1) appear to be contrary to the description in the Methods (200–250 g).&lt;/p&gt;&lt;p&gt;The Editors-in-Chief therefore no longer have confidence in the presented data.&lt;/p&gt;&lt;p&gt;None of the authors have responded to any correspondence from the editor or publisher about this retraction notice.&lt;/p&gt;&lt;ul data-track-component=\"outbound reference\" data-track-context=\"references section\"&gt;&lt;li&gt;&lt;p&gt;Naseer F, Kousar K, Abduh MS et al (2023) Evaluation of the anticancer potential of CD44 targeted vincristine nanoformulation in prostate cancer xenograft model: a multi-dynamic approach for advanced pharmacokinetic evaluation. Cancer Nanotechnol 14:65. https://doi.org/10.1186/s12645-023-00218-2&lt;/p&gt;&lt;p&gt;Article CAS Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ul&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan&lt;/p&gt;&lt;p&gt;Kousain Kousar, Faiza Naseer &amp; Tahir Ahmad&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan&lt;/p&gt;&lt;p&gt;Faiza Naseer&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia&lt;/p&gt;&lt;p&gt;Maisa S. Abduh&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia&lt;/p&gt;&lt;p&gt;Maisa S. Abduh&lt;/p&gt;&lt;/li&gt;&lt;","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"154 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Evaluation of the anticancer potential of CD44 targeted vincristine nanoformulation in prostate cancer xenograft model: a multi-dynamic approach for advanced pharmacokinetic evaluation 撤稿说明:CD44靶向长春新碱纳米制剂在前列腺癌异种移植模型中的抗癌潜力评估:一种用于高级药代动力学评估的多动力方法
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-07-27 DOI: 10.1186/s12645-024-00278-y
Faiza Naseer, Kousain Kousar, Maisa S. Abduh, Sadia Anjum, Tahir Ahmad
<br/><p><b>Retraction Note: Cancer Nanotechnology (2023) 14:65</b> <b>https://doi.org/10.1186/s12645-023-00218-2</b></p><br/><p>The Editors-in-Chief have retracted this article. After publication, concerns were raised regarding some of the images presented in the figures, specifically:</p><ul><li><p>Fig. 6 appears highly similar to Fig. 10 of Naseer et al. (2023)</p></li><li><p>Fig. 6 Pure VC 12 h 90 ug/ml and VC-loaded TCs-HA 24 h 50 ug/ml images appear highly similar</p></li><li><p>Fig. 17 A5 and Fig. 18 D5 images appear to overlap (flipped and with different magnification)</p></li><li><p>Fig. 18 C6 and D6 appear to overlap (with different magnification)</p></li><li><p>Several panels in Figs. 17 and 18 appear highly similar to those in Fig. 8 of Kousar et al. (2023)</p></li></ul><p>The authors have been unable to provide the underlying raw data upon request. The Editors-in-Chief therefore no longer have confidence in the presented data.</p><p>None of the authors have responded to any correspondence from the editor or publisher about this retraction notice.</p><ul data-track-component="outbound reference" data-track-context="references section"><li><p>Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U (2023) Formulation for the targeted delivery of a vaccine strain of oncolytic measles virus (OMV) in hyaluronic acid coated thiolated chitosan as a green nanoformulation for the treatment of prostate cancer: a viro-immunotherapeutic approach. Int J Nanomed 18:185–205. https://doi.org/10.2147/IJN.S386560</p><p>Article CAS Google Scholar </p></li><li><p>Kousar K, Naseer F, Abduh MS et al (2023) Green synthesis of oncolytic Newcastle disease virus-loaded thiolated chitosan nanoformulation for CD44 targeted delivery and sustained release of virus in cervical cancer xenografts. Cancer Nano 14:71. https://doi.org/10.1186/s12645-023-00220-8</p><p>Article CAS Google Scholar </p></li></ul><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan</p><p>Faiza Naseer, Kousain Kousar & Tahir Ahmad</p></li><li><p>Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan</p><p>Faiza Naseer</p></li><li><p>Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia</p><p>Maisa S. Abduh</p></li><li><p>Department of Biology, University of Hail, Hail, Saudi Arabia</p><p>Sadia Anjum</p></li></ol><span>Authors</span><ol><li><span>Faiza Naseer</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Sch
撤稿说明:Cancer Nanotechnology (2023) 14:65 https://doi.org/10.1186/s12645-023-00218-2The 主编已撤回这篇文章。图 6 纯 VC 12 h 90 ug/ml 和 VC-loaded TCs-HA 24 h 50 ug/ml 的图像高度相似。图 17 A5 和图 18 D5 的图像出现重叠(翻转且放大倍数不同)。图 17 和 18 中的几个面板与 Kousar 等人(2023 年)的图 8 中的面板高度相似。因此,主编对所提供的数据不再有信心。作者均未回复编辑或出版商有关撤稿通知的任何信件。Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U (2023) 在透明质酸包覆的硫醇化壳聚糖中靶向递送溶瘤麻疹病毒(OMV)疫苗株的制剂,作为治疗前列腺癌的绿色纳米制剂:一种病毒免疫治疗方法。https://doi.org/10.2147/IJN.S386560Article CAS Google Scholar Kousar K, Naseer F, Abduh MS et al (2023) Green synthesis of oncolytic Newcastle disease virus-loaded thiolated chitosan nanoformulation for CD44 targeted delivery and sustained release of virus in cervical cancer xenografts.Cancer Nano 14:71. https://doi.org/10.1186/s12645-023-00220-8Article CAS Google Scholar Download references作者和工作单位巴基斯坦伊斯兰堡国立科技大学阿塔-乌尔-拉赫曼应用生物科学学院工业生物技术Faiza Naseer, Kousain Kousar &;Tahir Ahmad巴基斯坦伊斯兰堡希法 Tameer e Millat 大学希法制药科学学院Faiza Naseer沙特阿拉伯吉达 21589 阿卜杜勒-阿齐兹国王大学应用医学科学院医学实验室科学系不同疾病中的免疫反应研究小组Maisa S. AbduhDepartment of Biology, Kousain Kousar &.AbduhDepartment of Biology, University of Hail, Hail, Saudi ArabiaSadia AnjumAuthorsFaiza NaseerView author publications您也可以在PubMed Google Scholar中搜索该作者Kousain KousarView author publications您也可以在PubMed Google Scholar中搜索该作者Maisa S. Abduh查看作者发表的文章Abduh查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Sadia Anjum查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Tahir Ahmad查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者通信作者通信作者:Faiza Naseer或Tahir Ahmad.Publisher's NoteSpringer Nature对出版地图和机构隶属关系中的管辖权主张保持中立。开放获取 本文采用知识共享署名 4.0 国际许可协议,该协议允许以任何媒介或格式使用、共享、改编、分发和复制本文,但必须注明原作者和出处,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,则您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。除非在数据的信用行中另有说明,否则创作共用公共领域专用免责声明 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文提供的数据。引用本文Naseer, F., Kousar, K., Abduh, M.S. et al. Retraction Note: Evaluation of the anticancer potential of CD44 targeted vincristine nanoformulation in prostate cancer xenograft model: a multi-dynamic approach for advanced pharmacokinetic evaluation.Cancer Nano 15, 39 (2024). https://doi.org/10.1186/s12645-024-00278-yDownload citationPublished: 27 July 2024DOI: https://doi.org/10.1186/s12645-024-00278-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Retraction Note: Evaluation of the anticancer potential of CD44 targeted vincristine nanoformulation in prostate cancer xenograft model: a multi-dynamic approach for advanced pharmacokinetic evaluation","authors":"Faiza Naseer, Kousain Kousar, Maisa S. Abduh, Sadia Anjum, Tahir Ahmad","doi":"10.1186/s12645-024-00278-y","DOIUrl":"https://doi.org/10.1186/s12645-024-00278-y","url":null,"abstract":"&lt;br/&gt;&lt;p&gt;&lt;b&gt;Retraction Note: Cancer Nanotechnology (2023) 14:65&lt;/b&gt; &lt;b&gt;https://doi.org/10.1186/s12645-023-00218-2&lt;/b&gt;&lt;/p&gt;&lt;br/&gt;&lt;p&gt;The Editors-in-Chief have retracted this article. After publication, concerns were raised regarding some of the images presented in the figures, specifically:&lt;/p&gt;&lt;ul&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 6 appears highly similar to Fig. 10 of Naseer et al. (2023)&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 6 Pure VC 12 h 90 ug/ml and VC-loaded TCs-HA 24 h 50 ug/ml images appear highly similar&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 17 A5 and Fig. 18 D5 images appear to overlap (flipped and with different magnification)&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Fig. 18 C6 and D6 appear to overlap (with different magnification)&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;li&gt;\u0000&lt;p&gt;Several panels in Figs. 17 and 18 appear highly similar to those in Fig. 8 of Kousar et al. (2023)&lt;/p&gt;\u0000&lt;/li&gt;\u0000&lt;/ul&gt;&lt;p&gt;The authors have been unable to provide the underlying raw data upon request. The Editors-in-Chief therefore no longer have confidence in the presented data.&lt;/p&gt;&lt;p&gt;None of the authors have responded to any correspondence from the editor or publisher about this retraction notice.&lt;/p&gt;&lt;ul data-track-component=\"outbound reference\" data-track-context=\"references section\"&gt;&lt;li&gt;&lt;p&gt;Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U (2023) Formulation for the targeted delivery of a vaccine strain of oncolytic measles virus (OMV) in hyaluronic acid coated thiolated chitosan as a green nanoformulation for the treatment of prostate cancer: a viro-immunotherapeutic approach. Int J Nanomed 18:185–205. https://doi.org/10.2147/IJN.S386560&lt;/p&gt;&lt;p&gt;Article CAS Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Kousar K, Naseer F, Abduh MS et al (2023) Green synthesis of oncolytic Newcastle disease virus-loaded thiolated chitosan nanoformulation for CD44 targeted delivery and sustained release of virus in cervical cancer xenografts. Cancer Nano 14:71. https://doi.org/10.1186/s12645-023-00220-8&lt;/p&gt;&lt;p&gt;Article CAS Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ul&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan&lt;/p&gt;&lt;p&gt;Faiza Naseer, Kousain Kousar &amp; Tahir Ahmad&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan&lt;/p&gt;&lt;p&gt;Faiza Naseer&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia&lt;/p&gt;&lt;p&gt;Maisa S. Abduh&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Biology, University of Hail, Hail, Saudi Arabia&lt;/p&gt;&lt;p&gt;Sadia Anjum&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Faiza Naseer&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Sch","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"5 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on the thermal sensitivity of lung cancer cells exposed to an alternating magnetic field and magnesium-doped maghemite nanoparticles 暴露于交变磁场和掺镁氧化镁纳米粒子的肺癌细胞的热敏感性研究
IF 5.7 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-07-22 DOI: 10.1186/s12645-024-00276-0
Malgorzata Sikorska, Grzegorz Domanski, Magdalena Bamburowicz-Klimkowska, Artur Kasprzak, Anna M. Nowicka, Monika Ruzycka-Ayoush, Ireneusz P. Grudzinski
Magnetic fluid hyperthermia (MFH) represents a promising therapeutic strategy in cancer utilizing the heating capabilities of magnetic nanoparticles when exposed to an alternating magnetic field (AMF). Because the efficacy and safety of MFH treatments depends on numerous intrinsic and extrinsic factors, therefore, the proper MFH setups should focus on thermal energy dosed into the cancer cells. In this study, we performed MFH experiments using human lung cancer A549 cells (in vitro) and NUDE Balb/c mice bearing human lung (A549) cancer (in vivo). In these two experimental models, the heat was induced by magnesium-doped iron(III) oxide nanoparticles coated with mPEG-silane (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) when exposed to an AMF. We observed that the lung cancer cells treated with Mg0.1-γ-Fe2O3(mPEG-silane)0.5 (0.25 mg·mL−1) and magnetized for 30 min at 14.4 kA·m−1 yielded a satisfactory outcome in reducing the cell viability up to ca. 21% (in vitro). The activation energy calculated for this field strength was estimated for 349 kJ·mol−1. Both volumetric measurements and tumor mass assessments confirmed by magnetic resonance imaging (MRI) showed a superior thermal effect in mice bearing human lung cancer injected intratumorally with Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles (3 mg·mL−1) and subjected to an AMF (18.3 kA·m−1) for 30 min four times at weekly intervals. Research demonstrated that mice undergoing MFH exhibited a marked suppression of tumor growth (V = 169 ± 94 mm3; p < 0.05) in comparison to the control group of untreated mice. The CEM43 (cumulative number of equivalent minutes at 43 °C) value for these treatments were estimated for ca. 9.6 min with the specific absorption rate (SAR) level ranging from 100 to 150 W·g−1. The as-obtained results, both cytotoxic and those related to energy calculations and SAR, may contribute to the advancement of thermal therapies, concurrently indicating that the proposed magnetic fluid hyperthermia holds a great potential for further testing in the context of medical applications.
磁流体热疗(MFH)是一种利用磁性纳米粒子在交变磁场(AMF)中的加热功能治疗癌症的有效方法。由于磁流体热疗的疗效和安全性取决于许多内在和外在因素,因此,正确的磁流体热疗设置应侧重于向癌细胞注入热能。在本研究中,我们使用人类肺癌 A549 细胞(体外)和携带人类肺癌(A549)的 NUDE Balb/c 小鼠(体内)进行了 MFH 实验。在这两个实验模型中,镁掺杂的氧化铁(III)纳米粒子包覆有 mPEG-硅烷(Mg0.1-γ-Fe2O3(mPEG-硅烷)0.5),当暴露于 AMF 时会诱导发热。我们观察到,用 Mg0.1-γ-Fe2O3(mPEG-silane)0.5(0.25 mg-mL-1)处理肺癌细胞,并在 14.4 kA-m-1 下磁化 30 分钟,结果令人满意,细胞活力降低了约 21%(体外)。该磁场强度计算出的活化能估计为 349 kJ-mol-1。通过磁共振成像(MRI)确认的体积测量和肿瘤质量评估结果显示,在瘤内注射 Mg0.1-γ-Fe2O3(mPEG-silane)0.5 纳米粒子(3 mg-mL-1)并接受 AMF(18.3 kA-m-1)30 分钟(每周四次)的人类肺癌小鼠身上,热效应非常显著。研究表明,与未接受治疗的对照组小鼠相比,接受 MFH 治疗的小鼠明显抑制了肿瘤的生长(V = 169 ± 94 mm3;p < 0.05)。这些治疗的 CEM43(43 °C 下的累积等效分钟数)值约为 9.6 分钟。9.6 分钟,比吸收率 (SAR) 为 100 至 150 W-g-1。目前获得的结果(包括细胞毒性以及与能量计算和 SAR 相关的结果)可能有助于热疗法的发展,同时表明拟议的磁流体热疗在医疗应用方面具有进一步测试的巨大潜力。
{"title":"Studies on the thermal sensitivity of lung cancer cells exposed to an alternating magnetic field and magnesium-doped maghemite nanoparticles","authors":"Malgorzata Sikorska, Grzegorz Domanski, Magdalena Bamburowicz-Klimkowska, Artur Kasprzak, Anna M. Nowicka, Monika Ruzycka-Ayoush, Ireneusz P. Grudzinski","doi":"10.1186/s12645-024-00276-0","DOIUrl":"https://doi.org/10.1186/s12645-024-00276-0","url":null,"abstract":"Magnetic fluid hyperthermia (MFH) represents a promising therapeutic strategy in cancer utilizing the heating capabilities of magnetic nanoparticles when exposed to an alternating magnetic field (AMF). Because the efficacy and safety of MFH treatments depends on numerous intrinsic and extrinsic factors, therefore, the proper MFH setups should focus on thermal energy dosed into the cancer cells. In this study, we performed MFH experiments using human lung cancer A549 cells (in vitro) and NUDE Balb/c mice bearing human lung (A549) cancer (in vivo). In these two experimental models, the heat was induced by magnesium-doped iron(III) oxide nanoparticles coated with mPEG-silane (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) when exposed to an AMF. We observed that the lung cancer cells treated with Mg0.1-γ-Fe2O3(mPEG-silane)0.5 (0.25 mg·mL−1) and magnetized for 30 min at 14.4 kA·m−1 yielded a satisfactory outcome in reducing the cell viability up to ca. 21% (in vitro). The activation energy calculated for this field strength was estimated for 349 kJ·mol−1. Both volumetric measurements and tumor mass assessments confirmed by magnetic resonance imaging (MRI) showed a superior thermal effect in mice bearing human lung cancer injected intratumorally with Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles (3 mg·mL−1) and subjected to an AMF (18.3 kA·m−1) for 30 min four times at weekly intervals. Research demonstrated that mice undergoing MFH exhibited a marked suppression of tumor growth (V = 169 ± 94 mm3; p < 0.05) in comparison to the control group of untreated mice. The CEM43 (cumulative number of equivalent minutes at 43 °C) value for these treatments were estimated for ca. 9.6 min with the specific absorption rate (SAR) level ranging from 100 to 150 W·g−1. The as-obtained results, both cytotoxic and those related to energy calculations and SAR, may contribute to the advancement of thermal therapies, concurrently indicating that the proposed magnetic fluid hyperthermia holds a great potential for further testing in the context of medical applications. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1