阳离子置换增强尖晶石双金属硫化物多孔纳米线的伪电容性能,从而提高能量存储能力

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2024-04-03 DOI:10.1007/s42114-024-00866-x
{"title":"阳离子置换增强尖晶石双金属硫化物多孔纳米线的伪电容性能,从而提高能量存储能力","authors":"","doi":"10.1007/s42114-024-00866-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The utilization of cation substitution presents a prospective approach to manipulate the structural characteristics and enhance the electrochemical functionality of spinel cobaltous sulfide (Co<sub>3</sub>S<sub>4</sub>). However, the underlying mechanism behind the impact of distinct cation substitutions on this phenomenon remains inadequately elucidated. In this study, we perform a thorough assessment to elucidate the influence of replacing cations on the pseudocapacitive properties of porous nanowires made of spinel bimetallic sulfide (Me<sub>x</sub>Co<sub>3-x</sub>S<sub>4</sub>; Me=Mn, Ni, Cu, and Co). One of the top competitors, NiCo<sub>2</sub>S<sub>4</sub>, demonstrates a significant specific capacitance of 1032.7 F g<sup>−1</sup> at a current density of 2 A g<sup>−1</sup>. Furthermore, it demonstrates an impressive capacitance retention rate of 92.1% after undergoing 8000 cycles. Moreover, the use of NiCo<sub>2</sub>S<sub>4</sub> and AC as the anode and cathode in the hybrid supercapacitor (HSC) lead to a significant energy density of 49.3 Wh kg<sup>−1</sup> at 1600 W kg<sup>−1</sup>, validating the effectiveness of the prepared porous nanowire-like NiCo<sub>2</sub>S<sub>4</sub> as an appropriate substance for energy storage systems. Density functional theory (DFT) confirms that the substitution of cation can stimulate the electrochemical activity of Co, facilitate stronger inter-element interactions, and synergistically enhance the conductivity of cobalt-based bimetallic sulfides.</p> <span> <h3>Graphical abstract</h3> <p>The regulatory mechanism of cation substitution on the pseudocapacitance performance of Me<sub>x</sub>Co<sub>3-x</sub>S<sub>4</sub> is elucidated through the integration of DFT calculations and electrochemical analysis.</p> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/42114_2024_866_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cation substitution for enhanced pseudocapacitance performance of spinel bimetallic sulfides porous nanowires for increased energy storage\",\"authors\":\"\",\"doi\":\"10.1007/s42114-024-00866-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The utilization of cation substitution presents a prospective approach to manipulate the structural characteristics and enhance the electrochemical functionality of spinel cobaltous sulfide (Co<sub>3</sub>S<sub>4</sub>). However, the underlying mechanism behind the impact of distinct cation substitutions on this phenomenon remains inadequately elucidated. In this study, we perform a thorough assessment to elucidate the influence of replacing cations on the pseudocapacitive properties of porous nanowires made of spinel bimetallic sulfide (Me<sub>x</sub>Co<sub>3-x</sub>S<sub>4</sub>; Me=Mn, Ni, Cu, and Co). One of the top competitors, NiCo<sub>2</sub>S<sub>4</sub>, demonstrates a significant specific capacitance of 1032.7 F g<sup>−1</sup> at a current density of 2 A g<sup>−1</sup>. Furthermore, it demonstrates an impressive capacitance retention rate of 92.1% after undergoing 8000 cycles. Moreover, the use of NiCo<sub>2</sub>S<sub>4</sub> and AC as the anode and cathode in the hybrid supercapacitor (HSC) lead to a significant energy density of 49.3 Wh kg<sup>−1</sup> at 1600 W kg<sup>−1</sup>, validating the effectiveness of the prepared porous nanowire-like NiCo<sub>2</sub>S<sub>4</sub> as an appropriate substance for energy storage systems. Density functional theory (DFT) confirms that the substitution of cation can stimulate the electrochemical activity of Co, facilitate stronger inter-element interactions, and synergistically enhance the conductivity of cobalt-based bimetallic sulfides.</p> <span> <h3>Graphical abstract</h3> <p>The regulatory mechanism of cation substitution on the pseudocapacitance performance of Me<sub>x</sub>Co<sub>3-x</sub>S<sub>4</sub> is elucidated through the integration of DFT calculations and electrochemical analysis.</p> <p> <span> <span> <img alt=\\\"\\\" src=\\\"https://static-content.springer.com/image/MediaObjects/42114_2024_866_Figa_HTML.png\\\"/> </span> </span></p> </span>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42114-024-00866-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42114-024-00866-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用阳离子置换是操纵尖晶石硫化钴(Co3S4)结构特征和增强其电化学功能的一种前瞻性方法。然而,不同阳离子取代对这一现象产生影响的内在机制仍未得到充分阐明。在本研究中,我们进行了全面的评估,以阐明取代阳离子对尖晶石双金属硫化物(MexCo3-xS4;Me=Mn、Ni、Cu 和 Co)制成的多孔纳米线的伪电容特性的影响。其中的镍钴2S4在电流密度为 2 A g-1 时具有 1032.7 F g-1 的显著比电容。此外,经过 8000 次循环后,其电容保持率达到 92.1%,令人印象深刻。此外,在混合超级电容器(HSC)中使用 NiCo2S4 和交流电作为阳极和阴极,在 1600 W kg-1 的条件下可获得 49.3 Wh kg-1 的高能量密度,验证了所制备的多孔纳米线状 NiCo2S4 作为储能系统的合适物质的有效性。密度泛函理论(DFT)证实,阳离子的取代可以激发Co的电化学活性,促进元素间更强的相互作用,协同提高钴基双金属硫化物的导电性。 图文摘要 结合 DFT 计算和电化学分析,阐明了阳离子取代对 MexCo3-xS4 假电容性能的调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cation substitution for enhanced pseudocapacitance performance of spinel bimetallic sulfides porous nanowires for increased energy storage

Abstract

The utilization of cation substitution presents a prospective approach to manipulate the structural characteristics and enhance the electrochemical functionality of spinel cobaltous sulfide (Co3S4). However, the underlying mechanism behind the impact of distinct cation substitutions on this phenomenon remains inadequately elucidated. In this study, we perform a thorough assessment to elucidate the influence of replacing cations on the pseudocapacitive properties of porous nanowires made of spinel bimetallic sulfide (MexCo3-xS4; Me=Mn, Ni, Cu, and Co). One of the top competitors, NiCo2S4, demonstrates a significant specific capacitance of 1032.7 F g−1 at a current density of 2 A g−1. Furthermore, it demonstrates an impressive capacitance retention rate of 92.1% after undergoing 8000 cycles. Moreover, the use of NiCo2S4 and AC as the anode and cathode in the hybrid supercapacitor (HSC) lead to a significant energy density of 49.3 Wh kg−1 at 1600 W kg−1, validating the effectiveness of the prepared porous nanowire-like NiCo2S4 as an appropriate substance for energy storage systems. Density functional theory (DFT) confirms that the substitution of cation can stimulate the electrochemical activity of Co, facilitate stronger inter-element interactions, and synergistically enhance the conductivity of cobalt-based bimetallic sulfides.

Graphical abstract

The regulatory mechanism of cation substitution on the pseudocapacitance performance of MexCo3-xS4 is elucidated through the integration of DFT calculations and electrochemical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
An overview of sustainable biopolymer composites in sensor manufacturing and smart cities A novel bio-template strategy of assembled silver nanowires with cluster-random structure via tomato epidermis for transparent electromagnetic interference shielding and joule heating Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors Advances in biofilm characterization: utilizing rheology and atomic force microscopy in foods and related fields An overview of flexible sensing nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1