软件定义的车载网络中的路由和负载平衡机制调查

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Wireless Networks Pub Date : 2024-04-10 DOI:10.1007/s11276-024-03729-x
Madhuri Malakar, Judhistir Mahapatro, Timam Ghosh
{"title":"软件定义的车载网络中的路由和负载平衡机制调查","authors":"Madhuri Malakar, Judhistir Mahapatro, Timam Ghosh","doi":"10.1007/s11276-024-03729-x","DOIUrl":null,"url":null,"abstract":"<p>Software-defined vehicular networks (SDVN) is a promising technology for wireless data transmissions between vehicles. SDVN inherits software-defined networking principles and aims to improve the typical performance of safety and non-safety applications of vehicular adhoc networks. Consequently, enhancing the performance of Intelligent Transportation System (ITS). However, the performance of these ITS applications largely depends on the computational capability of the controller node, which involves creating or destroying a data path from the source vehicle to the destination vehicle and generating flow rules for the requests coming from the data plane elements. As a result, SDVN often suffers from the problems of overburdening the controller node with route requests under heavy traffic generation at vehicles and single-point controller failure. To counter these problems, solutions based on multiple controllers are proposed. In fact, the load-balancing problem remains an important issue. So, routing of data with multiple controllers and load-balancing, both topics in SDVN, go hand in hand. In this paper, we survey this state-of-the-art that discusses the above-mentioned challenges, starting with the SDVN preliminaries. We scrutinize the existing routing methodologies and also discuss load-balancing techniques. Furthermore, we provide real-time applications and services of SDVN, discuss trending research, potential future research directions, and the real-life applicability of SDVN that have not been addressed previously.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"45 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on routing and load-balancing mechanisms in software-defined vehicular networks\",\"authors\":\"Madhuri Malakar, Judhistir Mahapatro, Timam Ghosh\",\"doi\":\"10.1007/s11276-024-03729-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Software-defined vehicular networks (SDVN) is a promising technology for wireless data transmissions between vehicles. SDVN inherits software-defined networking principles and aims to improve the typical performance of safety and non-safety applications of vehicular adhoc networks. Consequently, enhancing the performance of Intelligent Transportation System (ITS). However, the performance of these ITS applications largely depends on the computational capability of the controller node, which involves creating or destroying a data path from the source vehicle to the destination vehicle and generating flow rules for the requests coming from the data plane elements. As a result, SDVN often suffers from the problems of overburdening the controller node with route requests under heavy traffic generation at vehicles and single-point controller failure. To counter these problems, solutions based on multiple controllers are proposed. In fact, the load-balancing problem remains an important issue. So, routing of data with multiple controllers and load-balancing, both topics in SDVN, go hand in hand. In this paper, we survey this state-of-the-art that discusses the above-mentioned challenges, starting with the SDVN preliminaries. We scrutinize the existing routing methodologies and also discuss load-balancing techniques. Furthermore, we provide real-time applications and services of SDVN, discuss trending research, potential future research directions, and the real-life applicability of SDVN that have not been addressed previously.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03729-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03729-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

软件定义的车载网络(SDVN)是一种很有前途的车辆间无线数据传输技术。SDVN 继承了软件定义网络的原则,旨在提高车辆特设网络安全和非安全应用的典型性能。从而提高智能交通系统(ITS)的性能。然而,这些智能交通系统应用的性能在很大程度上取决于控制器节点的计算能力,其中涉及创建或销毁从源车辆到目的地车辆的数据路径,以及为来自数据平面元素的请求生成流规则。因此,SDVN 经常出现车辆产生大量流量时路由请求使控制器节点负担过重以及控制器单点故障等问题。为了解决这些问题,人们提出了基于多控制器的解决方案。事实上,负载平衡问题仍然是一个重要问题。因此,多控制器数据路由和负载平衡这两个 SDVN 的主题是相辅相成的。在本文中,我们从 SDVN 的基本原理入手,调查了讨论上述挑战的最新进展。我们仔细研究了现有的路由选择方法,并讨论了负载平衡技术。此外,我们还提供了 SDVN 的实时应用和服务,讨论了趋势研究、潜在的未来研究方向以及 SDVN 在现实生活中的适用性,这些都是以前未曾讨论过的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey on routing and load-balancing mechanisms in software-defined vehicular networks

Software-defined vehicular networks (SDVN) is a promising technology for wireless data transmissions between vehicles. SDVN inherits software-defined networking principles and aims to improve the typical performance of safety and non-safety applications of vehicular adhoc networks. Consequently, enhancing the performance of Intelligent Transportation System (ITS). However, the performance of these ITS applications largely depends on the computational capability of the controller node, which involves creating or destroying a data path from the source vehicle to the destination vehicle and generating flow rules for the requests coming from the data plane elements. As a result, SDVN often suffers from the problems of overburdening the controller node with route requests under heavy traffic generation at vehicles and single-point controller failure. To counter these problems, solutions based on multiple controllers are proposed. In fact, the load-balancing problem remains an important issue. So, routing of data with multiple controllers and load-balancing, both topics in SDVN, go hand in hand. In this paper, we survey this state-of-the-art that discusses the above-mentioned challenges, starting with the SDVN preliminaries. We scrutinize the existing routing methodologies and also discuss load-balancing techniques. Furthermore, we provide real-time applications and services of SDVN, discuss trending research, potential future research directions, and the real-life applicability of SDVN that have not been addressed previously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wireless Networks
Wireless Networks 工程技术-电信学
CiteScore
7.70
自引率
3.30%
发文量
314
审稿时长
5.5 months
期刊介绍: The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere. Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.
期刊最新文献
An EEG signal-based music treatment system for autistic children using edge computing devices A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN Cloud-edge collaboration-based task offloading strategy in railway IoT for intelligent detection Exploiting data transmission for route discoveries in mobile ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1