{"title":"多代理异构无线网络中的队列稳定性和动态吞吐量最大化","authors":"Ting Yang, Jiabao Sun, Amin Mohajer","doi":"10.1007/s11276-024-03730-4","DOIUrl":null,"url":null,"abstract":"<p>The Industrial Internet of Things (IIoT) envisions enhanced surveillance and control for industrial applications through diverse IoT devices. However, the increasing heterogeneity of deployed end devices poses challenges to current practices, hampering overall performance as device numbers escalate. To tackle this issue, we introduce an innovative distributed power control algorithm leveraging the wireless channel's nature to approximate the centralized maximum-weight scheduling algorithm. Employing ubiquitous multi-protocol mobile devices as intermediaries, we propose a concurrent dual-hop/multi-hop backhauling strategy, improving interoperability and facilitating data relay, translation, and forwarding from end IoT devices. Our focus is directed towards addressing large-scale network stability and queue management challenges. We formulate a long-term time-averaged optimization problem, incorporating considerations of end-to-end rate control, routing, link scheduling, and resource allocation to guarantee essential network-wide throughput. Furthermore, we present a real-time decomposition-based approximation algorithm that ensures adaptive resource allocation, queue stability, and meeting Quality of Service (QoS) constraints with the highest energy efficiency. Comprehensive numerical results verify significant energy efficiency improvements across diverse traffic models, maintaining throughput requirements for both uniform and hotspot User Equipment (UE) distribution patterns. This work offers a comprehensive solution to enhance IIoT performance and address evolving challenges in industrial applications.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"159 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Queue stability and dynamic throughput maximization in multi-agent heterogeneous wireless networks\",\"authors\":\"Ting Yang, Jiabao Sun, Amin Mohajer\",\"doi\":\"10.1007/s11276-024-03730-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Industrial Internet of Things (IIoT) envisions enhanced surveillance and control for industrial applications through diverse IoT devices. However, the increasing heterogeneity of deployed end devices poses challenges to current practices, hampering overall performance as device numbers escalate. To tackle this issue, we introduce an innovative distributed power control algorithm leveraging the wireless channel's nature to approximate the centralized maximum-weight scheduling algorithm. Employing ubiquitous multi-protocol mobile devices as intermediaries, we propose a concurrent dual-hop/multi-hop backhauling strategy, improving interoperability and facilitating data relay, translation, and forwarding from end IoT devices. Our focus is directed towards addressing large-scale network stability and queue management challenges. We formulate a long-term time-averaged optimization problem, incorporating considerations of end-to-end rate control, routing, link scheduling, and resource allocation to guarantee essential network-wide throughput. Furthermore, we present a real-time decomposition-based approximation algorithm that ensures adaptive resource allocation, queue stability, and meeting Quality of Service (QoS) constraints with the highest energy efficiency. Comprehensive numerical results verify significant energy efficiency improvements across diverse traffic models, maintaining throughput requirements for both uniform and hotspot User Equipment (UE) distribution patterns. This work offers a comprehensive solution to enhance IIoT performance and address evolving challenges in industrial applications.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03730-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03730-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Queue stability and dynamic throughput maximization in multi-agent heterogeneous wireless networks
The Industrial Internet of Things (IIoT) envisions enhanced surveillance and control for industrial applications through diverse IoT devices. However, the increasing heterogeneity of deployed end devices poses challenges to current practices, hampering overall performance as device numbers escalate. To tackle this issue, we introduce an innovative distributed power control algorithm leveraging the wireless channel's nature to approximate the centralized maximum-weight scheduling algorithm. Employing ubiquitous multi-protocol mobile devices as intermediaries, we propose a concurrent dual-hop/multi-hop backhauling strategy, improving interoperability and facilitating data relay, translation, and forwarding from end IoT devices. Our focus is directed towards addressing large-scale network stability and queue management challenges. We formulate a long-term time-averaged optimization problem, incorporating considerations of end-to-end rate control, routing, link scheduling, and resource allocation to guarantee essential network-wide throughput. Furthermore, we present a real-time decomposition-based approximation algorithm that ensures adaptive resource allocation, queue stability, and meeting Quality of Service (QoS) constraints with the highest energy efficiency. Comprehensive numerical results verify significant energy efficiency improvements across diverse traffic models, maintaining throughput requirements for both uniform and hotspot User Equipment (UE) distribution patterns. This work offers a comprehensive solution to enhance IIoT performance and address evolving challenges in industrial applications.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.