Ke Rong, Dawei Luo, Jiabao Deng, Jianghua Chen, Zijie Gao
{"title":"浸渍法石墨电极抗氧化复合涂层工艺研究","authors":"Ke Rong, Dawei Luo, Jiabao Deng, Jianghua Chen, Zijie Gao","doi":"10.1007/s41779-024-01014-w","DOIUrl":null,"url":null,"abstract":"<div><p>Graphite material is a kind of conductive material with excellent thermal shock resistance, is an important strategic mineral resources, widely used in iron and steel smelting, aviation, aerospace and other fields. However, the graphite electrode is easy to be oxidized in the air, resulting in a large amount of graphite electrode loss. In this paper, a new impregnation material is used to prepare graphite electrode oxidation resistance coating, by changing the ratio of raw materials, impregnation times, sintering process and other process parameters to prepare samples, and then oxidation resistance experiment to characterize its antioxidant capacity. The optimum technological parameters of graphite electrode coating obtained in this paper are: The content of antioxidant is Si 4.6%, SiC 5.8%, TiO<sub>2</sub> 6.9%, Al<sub>2</sub>O<sub>3</sub> 5.4%, H<sub>3</sub>BO<sub>3</sub> 3.7%, carboxymethyl cellulose 2.6%, deionized water 70%, hot impregnation twice, after sintering in nitrogen atmosphere at 400 ℃ for 30 min, In the range of 800 ℃~1200 ℃, the weight loss of the graphite samples with anti-oxidation coating is reduced by 7.3%~11.3%. The coating can protect the anti-oxidation of the graphite matrix well.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 3","pages":"763 - 776"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the process of oxidation resistance composite coating on graphite electrode by dipping method\",\"authors\":\"Ke Rong, Dawei Luo, Jiabao Deng, Jianghua Chen, Zijie Gao\",\"doi\":\"10.1007/s41779-024-01014-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphite material is a kind of conductive material with excellent thermal shock resistance, is an important strategic mineral resources, widely used in iron and steel smelting, aviation, aerospace and other fields. However, the graphite electrode is easy to be oxidized in the air, resulting in a large amount of graphite electrode loss. In this paper, a new impregnation material is used to prepare graphite electrode oxidation resistance coating, by changing the ratio of raw materials, impregnation times, sintering process and other process parameters to prepare samples, and then oxidation resistance experiment to characterize its antioxidant capacity. The optimum technological parameters of graphite electrode coating obtained in this paper are: The content of antioxidant is Si 4.6%, SiC 5.8%, TiO<sub>2</sub> 6.9%, Al<sub>2</sub>O<sub>3</sub> 5.4%, H<sub>3</sub>BO<sub>3</sub> 3.7%, carboxymethyl cellulose 2.6%, deionized water 70%, hot impregnation twice, after sintering in nitrogen atmosphere at 400 ℃ for 30 min, In the range of 800 ℃~1200 ℃, the weight loss of the graphite samples with anti-oxidation coating is reduced by 7.3%~11.3%. The coating can protect the anti-oxidation of the graphite matrix well.</p></div>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"60 3\",\"pages\":\"763 - 776\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-024-01014-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01014-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
石墨材料是一种具有优异抗热震性的导电材料,是重要的战略矿产资源,广泛应用于钢铁冶炼、航空、航天等领域。但石墨电极在空气中易被氧化,造成石墨电极大量损耗。本文采用一种新型浸渍材料制备石墨电极抗氧化涂层,通过改变原料配比、浸渍次数、烧结工艺等工艺参数制备样品,然后进行抗氧化实验表征其抗氧化能力。本文得到的石墨电极涂层最佳工艺参数为抗氧化剂含量为 Si 4.6%、SiC 5.8%、TiO2 6.9%、Al2O3 5.4%、H3BO3 3.7%、羧甲基纤维素 2.6%、去离子水 70%,热浸渍两次,在氮气环境下于 400 ℃烧结 30 min 后,在 800 ℃~1200 ℃范围内,涂有抗氧化涂层的石墨样品失重降低了 7.3%~11.3%。涂层能很好地保护石墨基体的抗氧化性。
Study on the process of oxidation resistance composite coating on graphite electrode by dipping method
Graphite material is a kind of conductive material with excellent thermal shock resistance, is an important strategic mineral resources, widely used in iron and steel smelting, aviation, aerospace and other fields. However, the graphite electrode is easy to be oxidized in the air, resulting in a large amount of graphite electrode loss. In this paper, a new impregnation material is used to prepare graphite electrode oxidation resistance coating, by changing the ratio of raw materials, impregnation times, sintering process and other process parameters to prepare samples, and then oxidation resistance experiment to characterize its antioxidant capacity. The optimum technological parameters of graphite electrode coating obtained in this paper are: The content of antioxidant is Si 4.6%, SiC 5.8%, TiO2 6.9%, Al2O3 5.4%, H3BO3 3.7%, carboxymethyl cellulose 2.6%, deionized water 70%, hot impregnation twice, after sintering in nitrogen atmosphere at 400 ℃ for 30 min, In the range of 800 ℃~1200 ℃, the weight loss of the graphite samples with anti-oxidation coating is reduced by 7.3%~11.3%. The coating can protect the anti-oxidation of the graphite matrix well.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted