Ru(III)与加替沙星配合物的合成、结构、热和形态特征及其在获得 RuO2 纳米结构中的应用

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Polish Journal of Chemical Technology Pub Date : 2024-04-03 DOI:10.2478/pjct-2024-0008
Khaled Althubeiti
{"title":"Ru(III)与加替沙星配合物的合成、结构、热和形态特征及其在获得 RuO2 纳米结构中的应用","authors":"Khaled Althubeiti","doi":"10.2478/pjct-2024-0008","DOIUrl":null,"url":null,"abstract":"In this work, the reaction between the drug gatifloxacin (as a ligand) with Ru(III) ions was investigated and the resulting complex was structurally and morphologically characterized. The structural properties of the complex were assessed using elemental analyses, molar conductance, thermogravimetry, UV-Vis, and IR spectroscopies, where the morphological characteristics were evaluated using SEM-EDX and XRD methods. The analyses suggested that two ligand molecules were coordinated to the Ru(III) ion via the nitrogen atoms of piperazine rings. The complex was formulated as [Ru(L)<jats:sub>2</jats:sub>(Cl)<jats:sub>2</jats:sub>]Cl, where the Ru(III) ion has a six-coordinate mode, and the coordination sphere is complemented by chlorine atoms. The interaction of the ligand with the Ru(III) ions leads to the product having an organized smooth plate-like structure with a main diameter of 39.42 nm. The RuO<jats:sub>2</jats:sub> oxide in the nanoscale range was generated by the thermal decomposition of the [Ru(L)<jats:sub>2</jats:sub>(Cl)<jats:sub>2</jats:sub>]Cl complex at 600 <jats:sup>o</jats:sup>C for 3 hours. SEM micrographs indicated that the RuO<jats:sub>2</jats:sub> material possesses uniform and organized microstructures with many internal cavities enabling it to be used as a catalyst for the heterogeneous degradation of dyes and organic pollutants.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, structural, thermal, and morphological characterization of Ru(III) complex with gatifloxacin and its utility to obtain RuO2 nanostructures\",\"authors\":\"Khaled Althubeiti\",\"doi\":\"10.2478/pjct-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the reaction between the drug gatifloxacin (as a ligand) with Ru(III) ions was investigated and the resulting complex was structurally and morphologically characterized. The structural properties of the complex were assessed using elemental analyses, molar conductance, thermogravimetry, UV-Vis, and IR spectroscopies, where the morphological characteristics were evaluated using SEM-EDX and XRD methods. The analyses suggested that two ligand molecules were coordinated to the Ru(III) ion via the nitrogen atoms of piperazine rings. The complex was formulated as [Ru(L)<jats:sub>2</jats:sub>(Cl)<jats:sub>2</jats:sub>]Cl, where the Ru(III) ion has a six-coordinate mode, and the coordination sphere is complemented by chlorine atoms. The interaction of the ligand with the Ru(III) ions leads to the product having an organized smooth plate-like structure with a main diameter of 39.42 nm. The RuO<jats:sub>2</jats:sub> oxide in the nanoscale range was generated by the thermal decomposition of the [Ru(L)<jats:sub>2</jats:sub>(Cl)<jats:sub>2</jats:sub>]Cl complex at 600 <jats:sup>o</jats:sup>C for 3 hours. SEM micrographs indicated that the RuO<jats:sub>2</jats:sub> material possesses uniform and organized microstructures with many internal cavities enabling it to be used as a catalyst for the heterogeneous degradation of dyes and organic pollutants.\",\"PeriodicalId\":20324,\"journal\":{\"name\":\"Polish Journal of Chemical Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Chemical Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pjct-2024-0008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2024-0008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,研究了药物加替沙星(作为配体)与 Ru(III)离子之间的反应,并对生成的复合物进行了结构和形态表征。使用元素分析、摩尔电导、热重分析、紫外-可见光谱和红外光谱评估了复合物的结构特性,并使用 SEM-EDX 和 XRD 方法评估了其形态特征。分析表明,两个配体分子通过哌嗪环的氮原子与 Ru(III) 离子配位。该配合物被命名为[Ru(L)2(Cl)2]Cl,其中 Ru(III)离子具有六配位模式,配位圈由氯原子补充。配体与 Ru(III)离子的相互作用使产物具有有组织的光滑板状结构,主直径为 39.42 纳米。Ru(L)2(Cl)2]Cl 复合物在 600 oC 下热分解 3 小时后,生成了纳米级范围的 RuO2 氧化物。扫描电镜显微照片显示,RuO2 材料具有均匀有序的微观结构,内部有许多空腔,可用作染料和有机污染物异相降解的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, structural, thermal, and morphological characterization of Ru(III) complex with gatifloxacin and its utility to obtain RuO2 nanostructures
In this work, the reaction between the drug gatifloxacin (as a ligand) with Ru(III) ions was investigated and the resulting complex was structurally and morphologically characterized. The structural properties of the complex were assessed using elemental analyses, molar conductance, thermogravimetry, UV-Vis, and IR spectroscopies, where the morphological characteristics were evaluated using SEM-EDX and XRD methods. The analyses suggested that two ligand molecules were coordinated to the Ru(III) ion via the nitrogen atoms of piperazine rings. The complex was formulated as [Ru(L)2(Cl)2]Cl, where the Ru(III) ion has a six-coordinate mode, and the coordination sphere is complemented by chlorine atoms. The interaction of the ligand with the Ru(III) ions leads to the product having an organized smooth plate-like structure with a main diameter of 39.42 nm. The RuO2 oxide in the nanoscale range was generated by the thermal decomposition of the [Ru(L)2(Cl)2]Cl complex at 600 oC for 3 hours. SEM micrographs indicated that the RuO2 material possesses uniform and organized microstructures with many internal cavities enabling it to be used as a catalyst for the heterogeneous degradation of dyes and organic pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
期刊最新文献
A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis Sulfonation Modification of Guar Gum and Its Performance as a Fracturing Fluids Thickener Synthesis and Self-assembly of a Simple CO2-responsive Diblock Polymer Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation Synthesis and characterization of curcumin-encapsulated loaded on carboxymethyl cellulose with docking validation as α-amylase and α-glucosidase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1