气候变暖条件下水产养殖中的细菌和病毒共同感染:共同进化的影响、诊断和治疗

IF 1.1 4区 农林科学 Q3 FISHERIES Diseases of aquatic organisms Pub Date : 2024-04-11 DOI:10.3354/dao03778
Sarahí Vega-Heredia, Ivone Giffard-Mena, Miriam Reverter
{"title":"气候变暖条件下水产养殖中的细菌和病毒共同感染:共同进化的影响、诊断和治疗","authors":"Sarahí Vega-Heredia, Ivone Giffard-Mena, Miriam Reverter","doi":"10.3354/dao03778","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"52 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment\",\"authors\":\"Sarahí Vega-Heredia, Ivone Giffard-Mena, Miriam Reverter\",\"doi\":\"10.3354/dao03778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT: Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.\",\"PeriodicalId\":11252,\"journal\":{\"name\":\"Diseases of aquatic organisms\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diseases of aquatic organisms\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/dao03778\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03778","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:气候变化和相关的环境温度波动导致野生和养殖水生物种爆发疾病的频率和严重程度增加。这对生物多样性产生了重大影响,也使水产养殖等全球食品生产系统面临风险。大多数感染是多种病原体之间复杂相互作用的结果,了解这些相互作用及其共同进化机制对于制定有效的诊断和控制策略至关重要。在这篇综述中,我们讨论了当前有关水产养殖中细菌-细菌、病毒-病毒、细菌和病毒共同感染的知识,以及它们在全球变暖背景下的共同进化。我们还提出了一个框架和不同的新方法(如先进的分子工具,如数字 PCR 和下一代测序),以 (1) 精确识别被忽视的共感染,(2) 通过了解物种间的相互作用来了解共感染的动态和机制,以及 (3) 促进多病原体预防措施(如多价疫苗)的开发。由于为满足全球人口增长对蛋白质的需求而加强养殖,以及全球变暖,预计水产养殖疾病爆发将增加,因此了解和治疗水产物种的共感染对全球粮食安全和经济具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment
ABSTRACT: Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diseases of aquatic organisms
Diseases of aquatic organisms 农林科学-兽医学
CiteScore
3.10
自引率
0.00%
发文量
53
审稿时长
8-16 weeks
期刊介绍: DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically: -Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens -Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)- Diseases due to internal circumstances (innate, idiopathic, genetic)- Diseases due to proliferative disorders (neoplasms)- Disease diagnosis, treatment and prevention- Molecular aspects of diseases- Nutritional disorders- Stress and physical injuries- Epidemiology/epizootiology- Parasitology- Toxicology- Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)- Diseases as indicators of humanity''s detrimental impact on nature- Genomics, proteomics and metabolomics of disease- Immunology and disease prevention- Animal welfare- Zoonosis
期刊最新文献
Polycystic ovarian disease in aquarium-managed cownose rays Rhinoptera bonasus. Population biology of crab Hapalogaster dentata parasitized by rhizocephalan Briarosaccus hoegi in the northwestern Sea of Japan. Spatial variations in ectoparasite Pseudione galacanthae prevalence in the squat lobster Grimothea gregaria in Argentine Patagonia. Characterization of Piscinoodinium sp. associated with epizootics and mortality in non-native and endemic freshwater fish of the Andaman Islands, India. Disease assessment in 'coral gardening' nurseries in the Maldives and implications for coral restoration success.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1