利用间充质干细胞和神经干细胞治疗以中央管局灶性扩张为特征的环状肌瘫痪

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2024-04-05 DOI:10.1007/s13770-024-00637-1
Mo Li, Xinyu Wang, Boling Qi, Shengyu Cui, Tianqi Zheng, Yunqian Guan, Longbing Ma, Sumei Liu, Qian Li, Zhiguo Chen, Fengzeng Jian
{"title":"利用间充质干细胞和神经干细胞治疗以中央管局灶性扩张为特征的环状肌瘫痪","authors":"Mo Li, Xinyu Wang, Boling Qi, Shengyu Cui, Tianqi Zheng, Yunqian Guan, Longbing Ma, Sumei Liu, Qian Li, Zhiguo Chen, Fengzeng Jian","doi":"10.1007/s13770-024-00637-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">BACKGROUND:</h3><p>Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities.</p><h3 data-test=\"abstract-sub-heading\">METHODS:</h3><p>In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia.</p><h3 data-test=\"abstract-sub-heading\">RESULTS:</h3><p>The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain.</p><h3 data-test=\"abstract-sub-heading\">CONCLUSION:</h3><p>Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":"202 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of Syringomyelia Characterized by Focal Dilatation of the Central Canal Using Mesenchymal Stem Cells and Neural Stem Cells\",\"authors\":\"Mo Li, Xinyu Wang, Boling Qi, Shengyu Cui, Tianqi Zheng, Yunqian Guan, Longbing Ma, Sumei Liu, Qian Li, Zhiguo Chen, Fengzeng Jian\",\"doi\":\"10.1007/s13770-024-00637-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">BACKGROUND:</h3><p>Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities.</p><h3 data-test=\\\"abstract-sub-heading\\\">METHODS:</h3><p>In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia.</p><h3 data-test=\\\"abstract-sub-heading\\\">RESULTS:</h3><p>The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain.</p><h3 data-test=\\\"abstract-sub-heading\\\">CONCLUSION:</h3><p>Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-024-00637-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00637-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:脊髓环肌瘤是一种渐进性慢性疾病,会导致神经疼痛、感觉分离和运动障碍。手术后症状往往得不到改善。方法:本研究使用以中央管局灶性扩张为特征的脊髓空洞症大鼠模型,探索有效的移植方案,并评估间充质干细胞和诱导神经干细胞治疗脊髓空洞症的效果。结果:研究结果表明,细胞移植不仅能促进鞘膜萎缩,还能刺激上皮细胞增殖,其效果与移植位置有关。这些反应只有在细胞移植到空腔时才会出现。此外,我们还发现细胞移植将活化的小胶质细胞转化为 M2 表型。表达 IGF1 的 M2 小胶质细胞可能在神经痛的修复中发挥重要作用。此外,上皮细胞的增殖可能表明内源性干细胞被激活,这对脊髓损伤的再生和修复非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treatment of Syringomyelia Characterized by Focal Dilatation of the Central Canal Using Mesenchymal Stem Cells and Neural Stem Cells

BACKGROUND:

Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities.

METHODS:

In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia.

RESULTS:

The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain.

CONCLUSION:

Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Efficacy of Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cell Replacement Therapy in a Vascular Dementia Animal Model. Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents. Innovations in Vascular Repair from Mechanical Intervention to Regenerative Therapies. Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues. Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1