小鼠β-肌收缩蛋白的错义突变(C667F)会导致胚胎死亡、肌病和血脑屏障失稳。

IF 4 3区 医学 Q2 CELL BIOLOGY Disease Models & Mechanisms Pub Date : 2024-04-15 DOI:10.1242/dmm.050594
Rui Lois Tan, Francesca Sciandra, Wolfgang Hübner, Manuela Bozzi, Jens Reimann, Susanne Schoch, Andrea Brancaccio, Sandra Blaess
{"title":"小鼠β-肌收缩蛋白的错义突变(C667F)会导致胚胎死亡、肌病和血脑屏障失稳。","authors":"Rui Lois Tan, Francesca Sciandra, Wolfgang Hübner, Manuela Bozzi, Jens Reimann, Susanne Schoch, Andrea Brancaccio, Sandra Blaess","doi":"10.1242/dmm.050594","DOIUrl":null,"url":null,"abstract":"Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes Muscle-Eye-Brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular endfeet resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Due to the partially penetrant developmental phenotype of the C669F-β-DG mice, they represent a novel and highly valuable mouse model to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missense mutation (C667F) in murine β-dystroglycan causes embryonic lethality, myopathy and blood-brain barrier destabilization.\",\"authors\":\"Rui Lois Tan, Francesca Sciandra, Wolfgang Hübner, Manuela Bozzi, Jens Reimann, Susanne Schoch, Andrea Brancaccio, Sandra Blaess\",\"doi\":\"10.1242/dmm.050594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes Muscle-Eye-Brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular endfeet resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Due to the partially penetrant developmental phenotype of the C669F-β-DG mice, they represent a novel and highly valuable mouse model to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.050594\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050594","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Dystroglycan(DG)是一种细胞外基质受体,由 DAG1 基因编码的 α- 和 β-DG 亚基组成。β-DG基因的同源突变(c.2006G>T, p.Cys669Phe)会导致人类肌肉-眼-脑疾病和多囊性白营养不良症。在这种原发性肌营养不良症的小鼠模型中,大约三分之二的同卵胚胎不能发育至足月。出生后的突变小鼠发育正常,但会出现晚发型肌病,组织病理学变化部分渗透,活动轮表现受损。它们的大脑和眼睛结构正常,但突变体β-DG在神经胶质血管周围内膜的定位发生了改变,导致血脑屏障和视网膜屏障的蛋白质组成紊乱。此外,突变小鼠肌肉和大脑中的α-和β-DG蛋白水平显著降低。由于 C669F-β-DG 小鼠具有部分穿透性发育表型,它们代表了一种新型且极具价值的小鼠模型,可用于研究胚胎发育过程中以及成熟肌肉、大脑和眼睛中 β-DG 功能改变的分子影响,并深入了解原发性肌张力障碍性疾病的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Missense mutation (C667F) in murine β-dystroglycan causes embryonic lethality, myopathy and blood-brain barrier destabilization.
Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes Muscle-Eye-Brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular endfeet resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Due to the partially penetrant developmental phenotype of the C669F-β-DG mice, they represent a novel and highly valuable mouse model to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
期刊最新文献
The role of mesenchymal cells in cholangiocarcinoma. High-fat and high-sucrose diets induce an experimental rabbit model for age-related macular degeneration (AMD). Early life cisplatin exposure induces nerve growth factor mediated neuroinflammation and chemotherapy induced neuropathic pain. Hippo signaling cooperates with p53 to regulate lung airway mucous cell metaplasia. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1