{"title":"基于模拟退火算法的平行停车路径规划和跟踪控制","authors":"Leiyan Yu, Yongpeng Cai, Xiangbo Feng, Yuanxue Zhou, Zihua Hu, Meilan Tian, Shaohua Sun","doi":"10.1007/s12239-024-00087-7","DOIUrl":null,"url":null,"abstract":"<p>To address the issues of curvature discontinuity and terminal tire non-return in the parallel parking of autonomous vehicles, a novel parallel parking path planning method based on the combination of the quintic polynomial curve and an improved sigmoid function was proposed. First, a vehicle kinematic model was established. Second, considering the position, front wheel angle, and yaw angle constraints during the parking process, a hybrid superimposed curve was designed. The parking path planning problem was converted into an optimal control problem, with the maximum curvature and curvature at both ends as objective functions, and the parameters were optimized using the simulated annealing algorithm. Subsequently, for path tracking control, the simulated annealing algorithm was used to optimize the prediction time horizon of the model predictive control algorithm. Finally, a series of actual vehicle experiments were conducted based on the Apollo Autonomous Driving Developer Suite, and the effectiveness of the proposed path planning method was validated. Therefore, this method can provide a certain reference for automatic parking path planning technology.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Parking Path Planning and Tracking Control Based on Simulated Annealing Algorithm\",\"authors\":\"Leiyan Yu, Yongpeng Cai, Xiangbo Feng, Yuanxue Zhou, Zihua Hu, Meilan Tian, Shaohua Sun\",\"doi\":\"10.1007/s12239-024-00087-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the issues of curvature discontinuity and terminal tire non-return in the parallel parking of autonomous vehicles, a novel parallel parking path planning method based on the combination of the quintic polynomial curve and an improved sigmoid function was proposed. First, a vehicle kinematic model was established. Second, considering the position, front wheel angle, and yaw angle constraints during the parking process, a hybrid superimposed curve was designed. The parking path planning problem was converted into an optimal control problem, with the maximum curvature and curvature at both ends as objective functions, and the parameters were optimized using the simulated annealing algorithm. Subsequently, for path tracking control, the simulated annealing algorithm was used to optimize the prediction time horizon of the model predictive control algorithm. Finally, a series of actual vehicle experiments were conducted based on the Apollo Autonomous Driving Developer Suite, and the effectiveness of the proposed path planning method was validated. Therefore, this method can provide a certain reference for automatic parking path planning technology.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00087-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00087-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Parallel Parking Path Planning and Tracking Control Based on Simulated Annealing Algorithm
To address the issues of curvature discontinuity and terminal tire non-return in the parallel parking of autonomous vehicles, a novel parallel parking path planning method based on the combination of the quintic polynomial curve and an improved sigmoid function was proposed. First, a vehicle kinematic model was established. Second, considering the position, front wheel angle, and yaw angle constraints during the parking process, a hybrid superimposed curve was designed. The parking path planning problem was converted into an optimal control problem, with the maximum curvature and curvature at both ends as objective functions, and the parameters were optimized using the simulated annealing algorithm. Subsequently, for path tracking control, the simulated annealing algorithm was used to optimize the prediction time horizon of the model predictive control algorithm. Finally, a series of actual vehicle experiments were conducted based on the Apollo Autonomous Driving Developer Suite, and the effectiveness of the proposed path planning method was validated. Therefore, this method can provide a certain reference for automatic parking path planning technology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.