Xiaoyu Mao, Zi Ye, Jiaming Liang, Jiawen Lin, Xinyu Mei, Danfeng Deng, Renjie Shi, Zefeng Wang
{"title":"具有持久抗菌效果的铜基金属有机框架/聚合物泡沫","authors":"Xiaoyu Mao, Zi Ye, Jiaming Liang, Jiawen Lin, Xinyu Mei, Danfeng Deng, Renjie Shi, Zefeng Wang","doi":"10.1007/s13726-024-01314-9","DOIUrl":null,"url":null,"abstract":"<div><p>The development of durable and effective antibacterial materials has been a research hotspot. Here, we reported a new kind of long-lasting stable antibacterial material [Cu-metal–organic framework (MOF)-embedded polyethylene (PE)/ethylene vinyl acetate copolymer (EVA), namely Cu-MOF-embedded PE/EVA] through extrusion foaming, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and energy dispersive spectroscopy (EDS). The degree of agglomeration or cluster formation, thermal stability, and melting point temperature of different contents of Cu-MOF/PE/EVA foams were evaluated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The results indicated that with the increase of Cu-MOF content, the average size and swelling ratio for foams increased, instead, the density decreased. Besides, the surface gradually showed good hydrophobicity. Remarkably, the water absorption rate was nearly 8 times that of pure PE/EVA when the Cu-MOF content reached 3%. Since Cu-MOF is stably embedded in the foaming structure and well dispersed, it can release Cu<sup>2+</sup> at a rate of about 37 ppb/day in foams containing 3% Cu-MOF, which not only maintains the antimicrobial capacity up to 99.2%, but also have no cytotoxicity. Finally, a promising new candidate for medical material with excellent, durable antibacterial ability was proposed.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 10","pages":"1423 - 1434"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-based metal organic framework/polymer foams with long-lasting antibacterial effect\",\"authors\":\"Xiaoyu Mao, Zi Ye, Jiaming Liang, Jiawen Lin, Xinyu Mei, Danfeng Deng, Renjie Shi, Zefeng Wang\",\"doi\":\"10.1007/s13726-024-01314-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of durable and effective antibacterial materials has been a research hotspot. Here, we reported a new kind of long-lasting stable antibacterial material [Cu-metal–organic framework (MOF)-embedded polyethylene (PE)/ethylene vinyl acetate copolymer (EVA), namely Cu-MOF-embedded PE/EVA] through extrusion foaming, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and energy dispersive spectroscopy (EDS). The degree of agglomeration or cluster formation, thermal stability, and melting point temperature of different contents of Cu-MOF/PE/EVA foams were evaluated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The results indicated that with the increase of Cu-MOF content, the average size and swelling ratio for foams increased, instead, the density decreased. Besides, the surface gradually showed good hydrophobicity. Remarkably, the water absorption rate was nearly 8 times that of pure PE/EVA when the Cu-MOF content reached 3%. Since Cu-MOF is stably embedded in the foaming structure and well dispersed, it can release Cu<sup>2+</sup> at a rate of about 37 ppb/day in foams containing 3% Cu-MOF, which not only maintains the antimicrobial capacity up to 99.2%, but also have no cytotoxicity. Finally, a promising new candidate for medical material with excellent, durable antibacterial ability was proposed.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"33 10\",\"pages\":\"1423 - 1434\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01314-9\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01314-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Copper-based metal organic framework/polymer foams with long-lasting antibacterial effect
The development of durable and effective antibacterial materials has been a research hotspot. Here, we reported a new kind of long-lasting stable antibacterial material [Cu-metal–organic framework (MOF)-embedded polyethylene (PE)/ethylene vinyl acetate copolymer (EVA), namely Cu-MOF-embedded PE/EVA] through extrusion foaming, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and energy dispersive spectroscopy (EDS). The degree of agglomeration or cluster formation, thermal stability, and melting point temperature of different contents of Cu-MOF/PE/EVA foams were evaluated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The results indicated that with the increase of Cu-MOF content, the average size and swelling ratio for foams increased, instead, the density decreased. Besides, the surface gradually showed good hydrophobicity. Remarkably, the water absorption rate was nearly 8 times that of pure PE/EVA when the Cu-MOF content reached 3%. Since Cu-MOF is stably embedded in the foaming structure and well dispersed, it can release Cu2+ at a rate of about 37 ppb/day in foams containing 3% Cu-MOF, which not only maintains the antimicrobial capacity up to 99.2%, but also have no cytotoxicity. Finally, a promising new candidate for medical material with excellent, durable antibacterial ability was proposed.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.