Maryam Valipour, Mahdi Rahmanifard, Navid Jaberi, Alireza Shadman, Mehdi Hatami, Hossein Ali Khonakdar, Farkhondeh Hemmati
{"title":"聚乳酸的反应性挤压发泡:通过控制加工过程中的化学反应定制泡沫特性","authors":"Maryam Valipour, Mahdi Rahmanifard, Navid Jaberi, Alireza Shadman, Mehdi Hatami, Hossein Ali Khonakdar, Farkhondeh Hemmati","doi":"10.1007/s13726-024-01304-x","DOIUrl":null,"url":null,"abstract":"<div><p>A continuous extrusion foaming process was performed on poly(lactic acid) (PLA) in the presence of different chemical foaming agents (CFAs) and a chain extender additive using different extruder barrel and die temperature profiles. Chemical reactions, which are involved in the extrusion foaming process of PLA, are intensely investigated to control the reactive extrusion process and tailor the foam final properties. A set of experiments was designed using the response surface methodology to evaluate the effects of material and processing parameters and optimize the PLA foam property. The results showed that the maximum void fraction, i.e. 0.55, was obtained by exothermic CFA at higher extruder temperatures. In contrast to the exothermic CFA, the addition of endothermic CFAs did not result in lightweight biodegradable foams. The void fractions of these extruded foams were less than 0.05. The presence of water molecules as a by-product of the decomposition reaction and also relatively lower decomposition temperatures of the endothermic CFAs have been considered as the main reasons. Among the variables studied, the CFA type had the strongest impact on the foam properties. In the second step, the barrel and die temperatures were adjusted accordingly.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 8","pages":"1031 - 1046"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive extrusion foaming of poly(lactic acid): tailoring foam properties through controlling in-process chemical reactions\",\"authors\":\"Maryam Valipour, Mahdi Rahmanifard, Navid Jaberi, Alireza Shadman, Mehdi Hatami, Hossein Ali Khonakdar, Farkhondeh Hemmati\",\"doi\":\"10.1007/s13726-024-01304-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A continuous extrusion foaming process was performed on poly(lactic acid) (PLA) in the presence of different chemical foaming agents (CFAs) and a chain extender additive using different extruder barrel and die temperature profiles. Chemical reactions, which are involved in the extrusion foaming process of PLA, are intensely investigated to control the reactive extrusion process and tailor the foam final properties. A set of experiments was designed using the response surface methodology to evaluate the effects of material and processing parameters and optimize the PLA foam property. The results showed that the maximum void fraction, i.e. 0.55, was obtained by exothermic CFA at higher extruder temperatures. In contrast to the exothermic CFA, the addition of endothermic CFAs did not result in lightweight biodegradable foams. The void fractions of these extruded foams were less than 0.05. The presence of water molecules as a by-product of the decomposition reaction and also relatively lower decomposition temperatures of the endothermic CFAs have been considered as the main reasons. Among the variables studied, the CFA type had the strongest impact on the foam properties. In the second step, the barrel and die temperatures were adjusted accordingly.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"33 8\",\"pages\":\"1031 - 1046\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13726-024-01304-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01304-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
摘要 采用不同的挤压机机筒和模头温度曲线,在不同化学发泡剂(CFA)和扩链添加剂的存在下,对聚(乳酸)(PLA)进行了连续挤压发泡工艺。对聚乳酸挤压发泡过程中涉及的化学反应进行了深入研究,以控制反应性挤压过程并调整泡沫的最终特性。采用响应面方法设计了一组实验,以评估材料和加工参数的影响,优化聚乳酸泡沫的性能。结果表明,在较高的挤出机温度下,放热 CFA 可获得最大空隙率,即 0.55。与放热型 CFA 相反,添加内热型 CFA 不会产生轻质可生物降解泡沫。这些挤出泡沫的空隙率小于 0.05。主要原因是分解反应的副产品水分子的存在,以及内热型 CFA 的分解温度相对较低。在所研究的变量中,CFA 类型对泡沫特性的影响最大。在第二步中,对料筒和模具温度进行了相应调整。 图表摘要
Reactive extrusion foaming of poly(lactic acid): tailoring foam properties through controlling in-process chemical reactions
A continuous extrusion foaming process was performed on poly(lactic acid) (PLA) in the presence of different chemical foaming agents (CFAs) and a chain extender additive using different extruder barrel and die temperature profiles. Chemical reactions, which are involved in the extrusion foaming process of PLA, are intensely investigated to control the reactive extrusion process and tailor the foam final properties. A set of experiments was designed using the response surface methodology to evaluate the effects of material and processing parameters and optimize the PLA foam property. The results showed that the maximum void fraction, i.e. 0.55, was obtained by exothermic CFA at higher extruder temperatures. In contrast to the exothermic CFA, the addition of endothermic CFAs did not result in lightweight biodegradable foams. The void fractions of these extruded foams were less than 0.05. The presence of water molecules as a by-product of the decomposition reaction and also relatively lower decomposition temperatures of the endothermic CFAs have been considered as the main reasons. Among the variables studied, the CFA type had the strongest impact on the foam properties. In the second step, the barrel and die temperatures were adjusted accordingly.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.